Английская Википедия:Generalized inverse Gaussian distribution
Шаблон:Probability distribution{2 K_p(\sqrt{ab})} x^{(p-1)} e^{-(ax + b/x)/2}</math>|
cdf =| mean =<math>\operatorname{E}[x]=\frac{\sqrt{b}\ K_{p+1}(\sqrt{a b}) }{ \sqrt{a}\ K_{p}(\sqrt{a b})}</math>
<math>\operatorname{E}[x^{-1}]=\frac{\sqrt{a}\ K_{p+1}(\sqrt{a b}) }{ \sqrt{b}\ K_{p}(\sqrt{a b})}-\frac{2p}{b}</math>
<math>\operatorname{E}[\ln x]=\ln \frac{\sqrt{b}}{\sqrt{a}}+\frac{\partial}{\partial p} \ln K_{p}(\sqrt{a b})</math>| median =| mode =<math>\frac{(p-1)+\sqrt{(p-1)^2+ab}}{a}</math>| variance =<math>\left(\frac{b}{a}\right)\left[\frac{K_{p+2}(\sqrt{ab})}{K_p(\sqrt{ab})}-\left(\frac{K_{p+1}(\sqrt{ab})}{K_p(\sqrt{ab})}\right)^2\right]</math>| skewness =| kurtosis =| entropy =| mgf =<math>\left(\frac{a}{a-2t}\right)^{\frac{p}{2}}\frac{K_p(\sqrt{b(a-2t)})}{K_p(\sqrt{ab})}</math>| char =<math>\left(\frac{a}{a-2it}\right)^{\frac{p}{2}}\frac{K_p(\sqrt{b(a-2it)})}{K_p(\sqrt{ab})}</math>| }}
In probability theory and statistics, the generalized inverse Gaussian distribution (GIG) is a three-parameter family of continuous probability distributions with probability density function
- <math>f(x) = \frac{(a/b)^{p/2}}{2 K_p(\sqrt{ab})} x^{(p-1)} e^{-(ax + b/x)/2},\qquad x>0,</math>
where Kp is a modified Bessel function of the second kind, a > 0, b > 0 and p a real parameter. It is used extensively in geostatistics, statistical linguistics, finance, etc. This distribution was first proposed by Étienne Halphen.[1][2][3] It was rediscovered and popularised by Ole Barndorff-Nielsen, who called it the generalized inverse Gaussian distribution. Its statistical properties are discussed in Bent Jørgensen's lecture notes.[4]
Properties
Alternative parametrization
By setting <math>\theta = \sqrt{ab}</math> and <math>\eta = \sqrt{b/a}</math>, we can alternatively express the GIG distribution as
- <math>f(x) = \frac{1}{2\eta K_p(\theta)} \left(\frac{x}{\eta}\right)^{p-1} e^{-\theta(x/\eta + \eta/x)/2}, </math>
where <math>\theta</math> is the concentration parameter while <math>\eta</math> is the scaling parameter.
Summation
Barndorff-Nielsen and Halgreen proved that the GIG distribution is infinitely divisible.[5]
Entropy
The entropy of the generalized inverse Gaussian distribution is given asШаблон:Citation needed
- <math>
\begin{align} H = \frac{1}{2} \log \left( \frac b a \right) & {} +\log \left(2 K_p\left(\sqrt{ab} \right)\right) - (p-1) \frac{\left[\frac{d}{d\nu}K_\nu\left(\sqrt{ab}\right)\right]_{\nu=p}}{K_p\left(\sqrt{a b}\right)} \\ & {} + \frac{\sqrt{a b}}{2 K_p\left(\sqrt{a b}\right)}\left( K_{p+1}\left(\sqrt{ab}\right) + K_{p-1}\left(\sqrt{a b}\right)\right) \end{align} </math>
where <math>\left[\frac{d}{d\nu}K_\nu\left(\sqrt{a b}\right)\right]_{\nu=p}</math> is a derivative of the modified Bessel function of the second kind with respect to the order <math>\nu</math> evaluated at <math>\nu=p</math>
Characteristic Function
The characteristic of a random variable <math> X\sim GIG(p, a, b) </math> is given as(for a derivation of the characteristic function, see supplementary materials of [6] )
- <math> E(e^{itX}) = \left(\frac{a }{a-2it }\right)^{\frac{p}{2}} \frac{K_{p}\left( \sqrt{(a-2it)b} \right)}{ K_{p}\left( \sqrt{ab} \right) } </math>
for <math> t \in \mathbb{R}</math> where <math> i </math> denotes the imaginary number.
Related distributions
Special cases
The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively.[7] Specifically, an inverse Gaussian distribution of the form
- <math> f(x;\mu,\lambda) = \left[\frac{\lambda}{2 \pi x^3}\right]^{1/2} \exp{ \left( \frac{-\lambda (x-\mu)^2}{2 \mu^2 x} \right)}</math>
is a GIG with <math>a = \lambda/\mu^2</math>, <math>b = \lambda</math>, and <math>p=-1/2</math>. A Gamma distribution of the form
- <math>
g(x;\alpha,\beta) = \beta^\alpha \frac 1 {\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} </math> is a GIG with <math>a = 2 \beta</math>, <math>b = 0</math>, and <math>p = \alpha</math>.
Other special cases include the inverse-gamma distribution, for a = 0.[7]
Conjugate prior for Gaussian
The GIG distribution is conjugate to the normal distribution when serving as the mixing distribution in a normal variance-mean mixture.[8][9] Let the prior distribution for some hidden variable, say <math>z</math>, be GIG:
- <math>
P(z\mid a,b,p) = \operatorname{GIG}(z\mid a,b,p) </math> and let there be <math>T</math> observed data points, <math>X=x_1,\ldots,x_T</math>, with normal likelihood function, conditioned on <math>z:</math>
- <math>
P(X\mid z,\alpha,\beta) = \prod_{i=1}^T N(x_i\mid\alpha+\beta z,z) </math>
where <math>N(x\mid\mu,v)</math> is the normal distribution, with mean <math>\mu</math> and variance <math>v</math>. Then the posterior for <math>z</math>, given the data is also GIG:
- <math>
P(z\mid X,a,b,p,\alpha,\beta) = \text{GIG}\left(z\mid a+T\beta^2,b+S,p-\frac T 2 \right) </math> where <math>\textstyle S = \sum_{i=1}^T (x_i-\alpha)^2</math>.[note 1]
Sichel distribution
The Sichel distribution[10][11] results when the GIG is used as the mixing distribution for the Poisson parameter <math>\lambda</math>.
Notes
References
See also
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite journal
- ↑ Étienne Halphen was the grandson of the mathematician Georges Henri Halphen.
- ↑ Шаблон:Cite book
- ↑ O. Barndorff-Nielsen and Christian Halgreen, Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 1977
- ↑ Шаблон:Cite journal
- ↑ 7,0 7,1 Ошибка цитирования Неверный тег
<ref>
; для сносокJKB
не указан текст - ↑ Dimitris Karlis, "An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution", Statistics & Probability Letters 57 (2002) 43–52.
- ↑ Barndorf-Nielsen, O.E., 1997. Normal Inverse Gaussian Distributions and stochastic volatility modelling. Scand. J. Statist. 24, 1–13.
- ↑ Sichel, Herbert S, 1975. "On a distribution law for word frequencies." Journal of the American Statistical Association 70.351a: 542-547.
- ↑ Stein, Gillian Z., Walter Zucchini, and June M. Juritz, 1987. "Parameter estimation for the Sichel distribution and its multivariate extension." Journal of the American Statistical Association 82.399: 938-944.
Ошибка цитирования Для существующих тегов <ref>
группы «note» не найдено соответствующего тега <references group="note"/>