Английская Википедия:Grothendieck trace theorem

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In functional analysis, the Grothendieck trace theorem is an extension of Lidskii's theorem about the trace and the determinant of a certain class of nuclear operators on Banach spaces, the so-called <math>\tfrac{2}{3}</math>-nuclear operators.[1] The theorem was proven in 1955 by Alexander Grothendieck.[2] Lidskii's theorem does not hold in general for Banach spaces.

The theorem should not be confused with the Grothendieck trace formula from algebraic geometry.

Grothendieck trace theorem

Given a Banach space <math>(B,\|\cdot\|)</math> with the approximation property and denote its dual as <math>B'</math>.

⅔-nuclear operators

Let <math>A</math> be a nuclear operator on <math>B</math>, then <math>A</math> is a <math>\tfrac{2}{3}</math>-nuclear operator if it has a decomposition of the form <math display=block>A = \sum\limits_{k=1}^{\infty}\varphi_k \otimes f_k</math> where <math>\varphi_k \in B</math> and <math>f_k \in B'</math> and <math display=block>\sum\limits_{k=1}^{\infty}\|\varphi_k\|^{2/3} \|f_k\|^{2/3} < \infty.</math>

Grothendieck's trace theorem

Let <math>\lambda_j(A)</math> denote the eigenvalues of a <math>\tfrac{2}{3}</math>-nuclear operator <math>A</math> counted with their algebraic multiplicities. If <math display=block>\sum\limits_j |\lambda_j(A)| < \infty</math> then the following equalities hold: <math display=block>\operatorname{tr}A = \sum\limits_j |\lambda_j(A)|</math> and for the Fredholm determinant <math display=block>\operatorname{det}(I+A) = \prod\limits_j (1+\lambda_j(A)).</math>

See also

Literature

References

Шаблон:Reflist

Шаблон:Topological tensor products and nuclear spaces Шаблон:Banach spaces Шаблон:Functional analysis