Английская Википедия:Hamming graph

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox graph

Файл:Hamming 3-3 unit distance.svg
Шаблон:Math drawn as a unit distance graph

Hamming graphs are a special class of graphs named after Richard Hamming and used in several branches of mathematics (graph theory) and computer science. Let Шаблон:Mvar be a set of Шаблон:Mvar elements and Шаблон:Mvar a positive integer. The Hamming graph Шаблон:Math has vertex set Шаблон:Mvar, the set of ordered Шаблон:Mvar-tuples of elements of Шаблон:Mvar, or sequences of length Шаблон:Mvar from Шаблон:Mvar. Two vertices are adjacent if they differ in precisely one coordinate; that is, if their Hamming distance is one. The Hamming graph Шаблон:Math is, equivalently, the Cartesian product of Шаблон:Mvar complete graphs Шаблон:Mvar.[1]

In some cases, Hamming graphs may be considered more generally as the Cartesian products of complete graphs that may be of varying sizes.[2] Unlike the Hamming graphs Шаблон:Math, the graphs in this more general class are not necessarily distance-regular, but they continue to be regular and vertex-transitive.

Special cases

Applications

The Hamming graphs are interesting in connection with error-correcting codes[7] and association schemes,[8] to name two areas. They have also been considered as a communications network topology in distributed computing.[4]

Computational complexity

It is possible in linear time to test whether a graph is a Hamming graph, and in the case that it is, find a labeling of it with tuples that realizes it as a Hamming graph.[2]

References

Шаблон:Reflist

External links

Шаблон:Authority control

  1. 1,0 1,1 Шаблон:Citation.
  2. 2,0 2,1 Шаблон:Citation.
  3. Шаблон:Citation. See in particular note (e) on p. 300.
  4. 4,0 4,1 Шаблон:Citation.
  5. Шаблон:Citation.
  6. Шаблон:Citation
  7. Шаблон:Citation.
  8. Шаблон:Citation. On p. 224, the authors write that "a careful study of completely regular codes in Hamming graphs is central to the study of association schemes".