Английская Википедия:Hermaphrodite

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Other uses Шаблон:Distinguish

Файл:Snails mating.jpg
Garden snails mating

A hermaphrodite (Шаблон:IPAc-en) is a sexually reproducing organism that produces both male and female gametes.[1] Animal species in which individuals are of different sexes, either male or female but not both, are gonochoric, which is the opposite of hermaphroditic.[2]

The individuals of many taxonomic groups of animals, primarily invertebrates, are hermaphrodites, capable of producing viable gametes of both sexes. In the great majority of tunicates, mollusks, and earthworms, hermaphroditism is a normal condition, enabling a form of sexual reproduction in which either partner can act as the female or male. Hermaphroditism is also found in some fish species, but is rare in other vertebrate groups. Most hermaphroditic species exhibit some degree of self-fertilization. The distribution of self-fertilization rates among animals is similar to that of plants, suggesting that similar pressures are operating to direct the evolution of selfing in animals and plants.[3]

A rough estimate of the number of hermaphroditic animal species is 65,000, about 5% of all animal species, or 33% excluding insects. Insects are almost exclusively gonochoric, and no definitive cases of hermaphroditism have been demonstrated in this group.[4] There are no known hermaphroditic species among mammals[5] or birds.[6]

About 94% of flowering plant species are either hermaphroditic (all flowers produce both male and female gametes) or monoecious, where both male and female flowers occur on the same plant. There are also mixed breeding systems, in both plants and animals, where hermaphrodite individuals coexist with males (called androdioecy) or with females (called gynodioecy), or all three exist in the same species (called trioecy). Sometimes, both male and hermaphrodite flowers occur on the same plant (andromonoecy) or both female and hermaphrodite flowers occur on the same plant (gynomonoecy).

Hermaphrodism is not to be confused with intersexuality, which is a separate and unrelated phenomenon. While intersex people are commonly referred to as hermaphrodites in medical literature, this usage is now considered to be stigmatizing and misleading,[7][8] as intersex people do not have functional sets of both male and female organs.[9][10]

Etymology

The term hermaphrodite derives from the Шаблон:Lang-lat, from Шаблон:Lang-grc,[11] which derives from Hermaphroditus (Ἑρμαφρόδιτος), the son of Hermes and Aphrodite in Greek mythology. According to Ovid, he fused with the nymph Salmacis resulting in one individual possessing physical traits of male and female sexes.[12] According to the earlier Diodorus Siculus, he was born with a physical body combining male and female sexes.[13] The word hermaphrodite entered the English lexicon as early as the late fourteenth century.[14]

Animals

Sequential hermaphrodites

Шаблон:Main

Файл:Crepidula fornicata.JPG
Shells of Crepidula fornicata (common slipper shell)
Файл:Ocellaris clownfish.JPG
Clownfish are initially male; the largest fish in a group becomes a female.
Файл:Parrotfish Timor.jpg
Most species of parrotfish start life as females and later change into males.

Sequential hermaphrodites (dichogamy) occur in species in which the individual first develops as one sex, but can later change into the opposite sex.[15] This contrasts with simultaneous hermaphrodites, in which an individual possesses fully functional male and female genitalia. Sequential hermaphroditism is common in fish (particularly teleost fish) and many gastropods (such as the common slipper shell). Sequential hermaphrodites can only change sex once.[16] Sequential hermaphroditism can best be understood in terms of behavioral ecology and evolutionary life history theory, as described in the size-advantage mode[17] first proposed by Michael T. Ghiselin[18] which states that if an individual of a certain sex could significantly increase its reproductive success after reaching a certain size, it would be to their advantage to switch to that sex.

Sequential hermaphrodites can be divided into three broad categories:

  • Protandry: Where an organism develops as a male, and then changes sex to a female.[15]
    • Example: The clownfish (genus Amphiprion) are colorful reef fish found living in symbiosis with sea anemones. Generally one anemone contains a 'harem', consisting of a large female, a smaller reproductive male, and even smaller non-reproductive males. If the female is removed, the reproductive male will change sex and the largest of the non-reproductive males will mature and become reproductive. It has been shown that fishing pressure can change when the switch from male to female occurs, since fishermen usually prefer to catch the larger fish. The populations are generally changing sex at a smaller size, due to natural selection.
  • Protogyny: Where the organism develops as a female, and then changes sex to a male.[15]
    • Example: Wrasses (Family Labridae) are a group of reef fish in which protogyny is common. Wrasses also have an uncommon life history strategy, which is termed diandry (literally, two males). In these species, two male morphs exists: an initial phase male and a terminal phase male. Initial phase males do not look like males and spawn in groups with females. They are not territorial. They are, perhaps, female mimics (which is why they are found swimming in group with females). Terminal phase males are territorial and have a distinctively bright coloration.[19] Individuals are born as males or females, but if they are born males, they are not born as terminal phase males. Females and initial phase males can become terminal phase males. Usually, the most dominant female or initial phase male replaces any terminal phase male when those males die or abandon the group.
  • Bidirectional sex changers: Where an organism has female and male reproductive organs, but may act either as a female or as a male during different stages in life.[15]
    • Example: Lythrypnus dalli (Family Lythrypnus) are a group of coral reef fish in which bidirectional sex change occurs. Once a social hierarchy is established a fish changes sex according to its social status, regardless of the initial sex, based on a simple principle: if the fish expresses subordinate behavior then it changes its sex to female, and if the fish expresses dominant or non-dominant superior behavior then it changes its sex to male.[20]

Dichogamy can have both conservation-related implications for humans, as mentioned above, as well as economic implications. For instance, groupers are favoured fish for eating in many Asian countries and are often aquacultured. Since the adults take several years to change from female to male, the broodstock are extremely valuable individuals.

Simultaneous hermaphrodites

Файл:Mating Pseudobiceros bedfordi.png
Turbellarians mating by penis fencing. Each has two penises on the undersides of their heads which they use to inject sperm.
Файл:Mating earthworms.jpg
Earthworms are simultaneous hermaphrodites, having both male and female reproductive organs.

Simultaneous hermaphrodites (or homogamous hermaphrodites) are individuals in which both male and female sexual organs are present and functional at the same time.[15] Self-fertilization often occurs.Шаблон:Citation needed

  • Pulmonate land snails and land slugs are perhaps the best-known kinds of simultaneous hermaphrodites, and are the most widespread of terrestrial animals possessing this sexual polymorphism. Sexual material is exchanged between both animals via spermatophores, and is then stored in the spermatheca. After exchange of spermatozoa, both animals will lay fertilized eggs after a period of gestation. The eggs will proceed to hatch after a development period. Snails typically reproduce from early spring through late autumn.[21]
  • Banana slugs are an example of a hermaphroditic gastropod. Mating with a partner is more desirable biologically than self-fertilization, as the genetic material of the resultant offspring is varied, but if mating with a partner is not possible, self-fertilization is practiced. The male sexual organ of an adult banana slug is quite large in proportion to its size, as well as compared to the female organ. It is possible for banana slugs, while mating, to become stuck together. If a substantial amount of wiggling fails to separate them, the male organ will be bitten off (using the slug's radula), see apophallation. If a banana slug has lost its male sexual organ, it can still mate as a female, making hermaphroditism a valuable adaptation.[22]
  • The species of colourful sea slugs Goniobranchus reticulatus is hermaphroditic, with both male and female organs active at the same time during copulation. After mating, the external portion of the penis detaches, but is able to regrow within 24 hours.[23][24]
  • Earthworms are another example of a simultaneous hermaphrodite. Although they possess ovaries and testes, they have a protective mechanism against self-fertilization. Sexual reproduction occurs when two worms meet and exchange gametes, copulating on damp nights during warm seasons.
  • The free-living hermaphroditic nematode Caenorhabditis elegans reproduces primarily by self-fertilization, but infrequent out-crossing events occur at a rate of approximately 1%.[25]
  • Hamlets do not practice self-fertilization, but a pair will mate multiple times over several nights, taking turns between which one acts as the male and which acts as the female.[26]Шаблон:Failed verification
  • The mangrove killifish (Kryptolebias marmoratus) are simultaneous hermaphrodites, producing both eggs and sperm and routinely reproducing by self-fertilization. Each individual normally fertilizes itself when an egg and sperm produced by an internal organ unite inside the fish's body.[27] This species is also regarded as the only known vertebrate species that can reproduce by self fertilization.[28]

Pseudohermaphroditism

Шаблон:Main

When spotted hyenas were first scientifically observed by explorers, they were thought to be hermaphrodites. Early observations of spotted hyenas in the wild led researchers to believe that all spotted hyenas, male and female, were born with what appeared to be a penis. The apparent penis in female spotted hyenas is in fact an enlarged clitoris, which contains an external birth canal.[29][30] It can be difficult to determine the sex of wild spotted hyenas until sexual maturity, when they may become pregnant. When a female spotted hyena gives birth, they pass the cub through the cervix internally, but then pass it out through the elongated clitoris.[31]

Plants

Шаблон:Main

Photo of a flower with a large orange centre and delicate yellow stigma protruding. The centre is surrounded by white petals and a halo of green and yellow spikes.
Hylocereus undatus, a hermaphrodite plant with perfect flowers that have both functional carpels and stamens.

The term hermaphrodite is used in botany to describe, for example, a perfect flower that has both staminate (male, pollen-producing) and carpellate (female, ovule-producing) parts. The overwhelming majority of flowering plant species are hermaphroditic.[32]

Monoecy

Flowering plant species with separate, imperfect, male and female flowers on the same individual are called monoecious. Monoecy only occurs in about 7% of flowering plant species.[33] Monoecious plants are often referred to as hermaphroditic because they produce both male and female gametes. However, the individual flowers are not hermaphroditic if they only produce gametes of one sex.[34] 65% of gymnosperm species are dioecious, but conifers are almost all monoecious.[35] Some plants can change their sex throughout their lifetime, a phenomenon called sequential hermaphroditism.Шаблон:Citation needed

Andromonecy

In andromonecious species, the plants produce perfect (hermaphrodite) flowers and separate fertile male flowers that are sterile as female.[36][37] Andromonecy occurs in about 4000 species of flowering plants (2% of flowering plants).[38]

Gynomonoecy

In gynomonoecious species, the plants produce hermaphrodite flowers and separate male-sterile pistillate flowers.[36] One example is the meadow saxifrage, Saxifraga granulata.[39] Charles Darwin gave several other examples in his 1877 book "The Different Forms of Flowers on Plants of the Same Species".[40]

About 57% of moss species and 68% of liverworts are unisexual, meaning that their gametophytes produce either male or female gametes, but not both.[41]Шаблон:Rp

Sequential hermaphroditism is common in bryophytes and some vascular plants.Шаблон:Citation needed

Use regarding humans

Шаблон:Intersex sidebar Шаблон:Main

Файл:Hermaphroditus lady lever.jpg
Hermaphroditus, the "son" of the Greek god Hermes and the goddess Aphrodite, origin of the word "hermaphrodite"
Файл:Fertilityobandojf.JPG
The Obando Fertility Rites in the Philippines, before becoming a Catholic festival, was initially an Anitist ritual dedicated to the hermaphrodite deity, Lakapati, who presided over fertility.[42]
Файл:Nadar - "Hermaphrodite" (Seventh Gallica image).jpg
1860 photograph by Nadar of an intersex person displaying genitalia, one of a nine-part series. The series may be the earliest medical photographic documentation of an intersex person.Шаблон:Sfn

Historically, the term hermaphrodite was used in law to refer to people whose sex was in doubt. The 12th-century Шаблон:Lang states that "Whether an hermaphrodite may witness a testament, depends on which sex prevails" ("Hermafroditus an ad testamentum adhiberi possit, qualitas sexus incalescentis ostendit.").[43][44].

Alexander ab Alexandro (1461–1523) stated, using the term hermaphrodite, that the people who bore the sexes of both man and woman were regarded by the Athenians and the Romans as monsters, and thrown into the sea at Athens and into the Tiber at Rome.[45] Similarly, the 17th-century English jurist and judge Edward Coke (Lord Coke), wrote in his Institutes of the Lawes of England on laws of succession stating, "Every heire is either a male, a female, or an hermaphrodite, that is both male and female. And an hermaphrodite (which is also called Androgynus) shall be heire, either as male or female, according to that kind of sexe which doth prevaile."[46][47]

During the Victorian era, medical authors attempted to ascertain whether or not humans could be hermaphrodites, adopting a precise biological definition to the term.[48] From that period until the early 21st century, intersex individuals were termed true hermaphrodites if their gonadal tissue contained both testicular and ovarian tissue, or pseudohermaphrodites if their external appearance (phenotype) differed from sex expected from internal gonads. This language has fallen out of favor due to misconceptions and stigma associated with the terms,[49][50][8][10] and also a shift to nomenclature based on genetics.

The term intersex describes a wide variety of combinations of what are considered male and female biological characteristics. Intersex biology may include, for example, ambiguous-looking external genitalia, karyotypes that include mixed XX and XY chromosome pairs (46XX/46XY, 46XX/47XXY or 45X/XY mosaic). Clinically, medicine currently describes intersex people as having disorders of sex development,[51] a term that has been vigorously challenged.[52] This is particularly significant because of the relationship between medical terminology and medical intervention.[53]

Intersex civil society organizations, and many human rights institutions,[54][55] have criticized medical interventions designed to make intersex bodies more typically male or female.

In some cases, intersex traits are caused by unusual levels of sex hormones, which may be the result of an atypical set of sex chromosomes.Шаблон:Medcn One common cause of intersex traits is the crossing over of the testis-determining factor (SRY) from the Y chromosome to the X chromosome during meiosis. The SRY is then activated in only certain areas, causing development of testes in some areas by beginning a series of events starting with the upregulation of the transcription factor (SOX9), and in other areas not being active (causing the growth of ovarian tissues). Thus, testicular and ovarian tissues will both be present in the same individual.[56]

Fetuses before sexual differentiation are sometimes described as female by doctors explaining the process.[57]Шаблон:Page needed This is not technically true. Before this stage, humans are simply undifferentiated and possess a paramesonephric duct, a mesonephric duct, and a genital tubercle.Шаблон:Citation needed

Evolution

Шаблон:Main Шаблон:For The evolution of anisogamy may have contributed to the evolution of simultaneous hermaphroditism and sequential hermaphroditism,[6] but it remains unclear if the evolution of anisogamy first led to hermaphroditism or gonochorism.[58]Шаблон:Rp It is possible that hermaphroditism evolved from gonochorism, or vice versa. Most studies on its evolution focus on plants, and its evolution in animals is unclear Шаблон:As of.[59]

Simultaneous hermaphroditism that exclusively reproduces through self-fertilization has evolved many times in plants and animals, but it might not last long evolutionarily.[60]Шаблон:Rp

In animals

Joan Roughgarden and Priya Iyer argued that the last common ancestor for animals was hermaphroditic and that transitions from hermaphroditism to gonochorism were more numerous than the reverse. However, their argument was based on paraphyletic Spiralia, assignments of sexual modes for the phylum level than the species level, and methods exclusively based on maximum parsimony.[59]

Hermaphroditism is polyphyletic in invertebrates where it evolved from gonochorism[1]Шаблон:Rp and gonochorism is also ancestral to hermaphroditic fishes.[61] According to Nelson Çabej simultaneous hermaphroditism in animals most likely evolved due to a limited number of mating partners.[62]

In plants

Шаблон:See also It is widely accepted that the first vascular plants were outcrossing hermaphrodites.[63] In flowering plants, hermaphroditism is ancestral to dioecy.[64]

Hermaphroditism in plants may promote self fertilization in pioneer populations.[65] However, plants have evolved multiple different mechanisms to avoid self-fertilization in hermaphrodites, including sequential hermaphroditism, molecular recognition systems and mechanical or morphological mechanisms such as heterostyly.[66]Шаблон:Rp

See also

References

Шаблон:Reflist

Further reading

Шаблон:Refbegin

Шаблон:Refend

External links

Шаблон:Wiktionary Шаблон:Commons

Шаблон:Sex (biology) Шаблон:Human sexuality and sexology Шаблон:Intersex

Шаблон:Authority control

  1. 1,0 1,1 Шаблон:Cite book
  2. Шаблон:Cite book
  3. Шаблон:Cite journal
  4. Шаблон:Cite book
  5. Шаблон:Cite book
  6. 6,0 6,1 Шаблон:Cite journal
  7. Шаблон:Cite web
  8. 8,0 8,1 Шаблон:Cite web
  9. Шаблон:Citation
  10. 10,0 10,1 Шаблон:Cite book
  11. Шаблон:Cite web
  12. Ovid, Metamorphoses, Book IV: The story of Hermaphroditus and Salmacis.
  13. Шаблон:Cite web
  14. Шаблон:Cite web
  15. 15,0 15,1 15,2 15,3 15,4 Шаблон:Cite book
  16. Шаблон:Cite book
  17. Шаблон:Cite journal
  18. Шаблон:Cite journal
  19. Шаблон:Cite book
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite news
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. Шаблон:Cite book
  27. Шаблон:Cite journal
  28. Шаблон:Cite journal
  29. Шаблон:Cite web
  30. Шаблон:Cite web
  31. Шаблон:Cite web
  32. Шаблон:Cite book
  33. Шаблон:Cite web
  34. Шаблон:Cite book
  35. Шаблон:Cite journal
  36. 36,0 36,1 Шаблон:Cite book
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite book
  41. Шаблон:Cite book
  42. Шаблон:Cite web
  43. Decretum Gratiani, C. 4, q. 2 et 3, c. 3
  44. Шаблон:Cite web
  45. Шаблон:Cite journal
  46. E Coke, The First Part of the Institutes of the Laws of England, Institutes 8.a. (1st Am. Ed. 1812).
  47. Шаблон:Cite journal
  48. Шаблон:Cite book
  49. Шаблон:Cite journal
  50. Шаблон:Cite journal
  51. Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Citation
  54. Шаблон:Citation
  55. Шаблон:Citation
  56. Шаблон:Cite journal
  57. Шаблон:Cite book
  58. Шаблон:Cite book
  59. 59,0 59,1 Шаблон:Cite journal
  60. Шаблон:Cite book
  61. Шаблон:Cite journal
  62. Шаблон:Cite book
  63. Шаблон:Cite book
  64. Шаблон:Cite book
  65. Шаблон:Cite book
  66. Шаблон:Cite book