Английская Википедия:Hexagon

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:For Шаблон:Other uses Шаблон:Redirect Шаблон:Regular polygon db

In geometry, a hexagon (from Greek Шаблон:Lang, Шаблон:Lang, meaning "six", and Шаблон:Lang, Шаблон:Lang, meaning "corner, angle") is a six-sided polygon.[1] The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

Regular hexagon

A regular hexagon has Schläfli symbol {6}[2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges.

A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an inscribed circle).

The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals <math>\tfrac{2}{\sqrt{3}}</math> times the apothem (radius of the inscribed circle). All internal angles are 120 degrees. A regular hexagon has six rotational symmetries (rotational symmetry of order six) and six reflection symmetries (six lines of symmetry), making up the dihedral group D6. The longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. From this it can be seen that a triangle with a vertex at the center of the regular hexagon and sharing one side with the hexagon is equilateral, and that the regular hexagon can be partitioned into six equilateral triangles.

Like squares and equilateral triangles, regular hexagons fit together without any gaps to tile the plane (three hexagons meeting at every vertex), and so are useful for constructing tessellations. The cells of a beehive honeycomb are hexagonal for this reason and because the shape makes efficient use of space and building materials. The Voronoi diagram of a regular triangular lattice is the honeycomb tessellation of hexagons. It is not usually considered a triambus, although it is equilateral.

Шаблон:Multiple image

Parameters

Файл:Regular hexagon 1.svg
R = Circumradius; r = Inradius; t = side length

The maximal diameter (which corresponds to the long diagonal of the hexagon), D, is twice the maximal radius or circumradius, R, which equals the side length, t. The minimal diameter or the diameter of the inscribed circle (separation of parallel sides, flat-to-flat distance, short diagonal or height when resting on a flat base), d, is twice the minimal radius or inradius, r. The maxima and minima are related by the same factor:

<math>\frac{1}{2}d = r = \cos(30^\circ) R = \frac{\sqrt{3}}{2} R = \frac{\sqrt{3}}{2} t</math>   and, similarly, <math>d = \frac{\sqrt{3}}{2} D.</math>

The area of a regular hexagon

<math>\begin{align}
 A &= \frac{3\sqrt{3}}{2}R^2 = 3Rr           = 2\sqrt{3} r^2 \\[3pt]
   &= \frac{3\sqrt{3}}{8}D^2 = \frac{3}{4}Dd = \frac{\sqrt{3}}{2} d^2 \\[3pt]
   &\approx 2.598 R^2 \approx 3.464 r^2\\
   &\approx 0.6495 D^2 \approx 0.866 d^2.

\end{align}</math>

For any regular polygon, the area can also be expressed in terms of the apothem a and the perimeter p. For the regular hexagon these are given by a = r, and p<math>{} = 6R = 4r\sqrt{3}</math>, so

<math>\begin{align}
 A &= \frac{ap}{2} \\
   &= \frac{r \cdot 4r\sqrt{3}}{2} = 2r^2\sqrt{3} \\
   &\approx 3.464 r^2.

\end{align}</math>

The regular hexagon fills the fraction <math>\tfrac{3\sqrt{3}}{2\pi} \approx 0.8270</math> of its circumscribed circle.

If a regular hexagon has successive vertices A, B, C, D, E, F and if P is any point on the circumcircle between B and C, then Шаблон:Nowrap.

It follows from the ratio of circumradius to inradius that the height-to-width ratio of a regular hexagon is 1:1.1547005; that is, a hexagon with a long diagonal of 1.0000000 will have a distance of 0.8660254 between parallel sides.

Point in plane

For an arbitrary point in the plane of a regular hexagon with circumradius <math>R</math>, whose distances to the centroid of the regular hexagon and its six vertices are <math>L</math> and <math>d_i</math> respectively, we have[3]

<math> d_1^2 + d_4^2 = d_2^2 + d_5^2 = d_3^2+ d_6^2= 2\left(R^2 + L^2\right), </math>
<math> d_1^2 + d_3^2+ d_5^2 = d_2^2 + d_4^2+ d_6^2 = 3\left(R^2 + L^2\right), </math>
<math> d_1^4 + d_3^4+ d_5^4 = d_2^4 + d_4^4+ d_6^4 = 3\left(\left(R^2 + L^2\right)^2 + 2 R^2 L^2\right). </math>

If <math>d_i</math> are the distances from the vertices of a regular hexagon to any point on its circumcircle, then [3]

<math>\left(\sum_{i=1}^6 d_i^2\right)^2 = 4 \sum_{i=1}^6 d_i^4 .</math>

Symmetry

Файл:Hexagon reflections.svg
The six lines of reflection of a regular hexagon, with Dih6 or r12 symmetry, order 12.
Файл:Regular hexagon symmetries.svg
The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars) Cyclic symmetries in the middle column are labeled as g for their central gyration orders. Full symmetry of the regular form is r12 and no symmetry is labeled a1.

The regular hexagon has D6 symmetry. There are 16 subgroups. There are 8 up to isomorphism: itself (D6), 2 dihedral: (D3, D2), 4 cyclic: (Z6, Z3, Z2, Z1) and the trivial (e)

These symmetries express nine distinct symmetries of a regular hexagon. John Conway labels these by a letter and group order.[4] r12 is full symmetry, and a1 is no symmetry. p6, an isogonal hexagon constructed by three mirrors can alternate long and short edges, and d6, an isotoxal hexagon constructed with equal edge lengths, but vertices alternating two different internal angles. These two forms are duals of each other and have half the symmetry order of the regular hexagon. The i4 forms are regular hexagons flattened or stretched along one symmetry direction. It can be seen as an elongated rhombus, while d2 and p2 can be seen as horizontally and vertically elongated kites. g2 hexagons, with opposite sides parallel are also called hexagonal parallelogons.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g6 subgroup has no degrees of freedom but can be seen as directed edges.

Hexagons of symmetry g2, i4, and r12, as parallelogons can tessellate the Euclidean plane by translation. Other hexagon shapes can tile the plane with different orientations.

p6m (*632) cmm (2*22) p2 (2222) p31m (3*3) pmg (22*) pg (××)
Файл:Isohedral tiling p6-13.png
r12
Файл:Isohedral tiling p6-12.png
i4
Файл:Isohedral tiling p6-7.png
g2
Файл:Isohedral tiling p6-11.png
d2
Файл:Isohedral tiling p6-10.png
d2
Файл:Isohedral tiling p6-9.png
p2
Файл:Isohedral tiling p6-1.png
a1
Dih6 Dih2 Z2 Dih1 Z1

Шаблон:-

A2 and G2 groups

Файл:Root system A2.svg
A2 group roots
Шаблон:Dynkin
Файл:Root system G2.svg
G2 group roots
Шаблон:Dynkin2

The 6 roots of the simple Lie group A2, represented by a Dynkin diagram Шаблон:Dynkin, are in a regular hexagonal pattern. The two simple roots have a 120° angle between them.

The 12 roots of the Exceptional Lie group G2, represented by a Dynkin diagram Шаблон:Dynkin2 are also in a hexagonal pattern. The two simple roots of two lengths have a 150° angle between them.

Шаблон:-

Dissection

6-cube projection 12 rhomb dissection
Файл:6-cube t0 A5.svg Файл:6-gon rhombic dissection-size2.svg Файл:6-gon rhombic dissection2-size2.svg

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into Шаблон:Nowrap parallelograms.[5] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. This decomposition of a regular hexagon is based on a Petrie polygon projection of a cube, with 3 of 6 square faces. Other parallelogons and projective directions of the cube are dissected within rectangular cuboids.

Dissection of hexagons into three rhombs and parallelograms
2D Rhombs Parallelograms
Файл:Hexagon dissection.svg Файл:Cube-skew-orthogonal-skew-solid.png Файл:Cuboid diagonal-orthogonal-solid.png Файл:Cuboid skew-orthogonal-solid.png
Regular {6} Hexagonal parallelogons
3D Square faces Rectangular faces
Файл:3-cube graph.svg Файл:Cube-skew-orthogonal-skew-frame.png Файл:Cuboid diagonal-orthogonal-frame.png Файл:Cuboid skew-orthogonal-frame.png
Cube Rectangular cuboid

Related polygons and tilings

A regular hexagon has Schläfli symbol {6}. A regular hexagon is a part of the regular hexagonal tiling, {6,3}, with three hexagonal faces around each vertex.

A regular hexagon can also be created as a truncated equilateral triangle, with Schläfli symbol t{3}. Seen with two types (colors) of edges, this form only has D3 symmetry.

A truncated hexagon, t{6}, is a dodecagon, {12}, alternating two types (colors) of edges. An alternated hexagon, h{6}, is an equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into six equilateral triangles by adding a center point. This pattern repeats within the regular triangular tiling.

A regular hexagon can be extended into a regular dodecagon by adding alternating squares and equilateral triangles around it. This pattern repeats within the rhombitrihexagonal tiling.

Файл:Regular polygon 6 annotated.svg Файл:Truncated triangle.svg Файл:Regular truncation 3 1000.svg Файл:Regular truncation 3 1.5.svg Файл:Regular truncation 3 0.55.svg Файл:Hexagram.svg Файл:Regular polygon 12 annotated.svg Файл:Regular polygon 3 annotated.svg
Regular
{6}
Truncated
t{3} = {6}
Hypertruncated triangles Stellated
Star figure 2{3}
Truncated
t{6} = {12}
Alternated
h{6} = {3}
Файл:Crossed-square hexagon.png Файл:Medial triambic icosahedron face.svg Файл:Great triambic icosahedron face.png Файл:Hexagonal cupola flat.svg Файл:Cube petrie polygon sideview.svg Файл:3-cube t0.svg Файл:3-cube t2.svg Файл:5-simplex graph.svg
Crossed
hexagon
A concave hexagon A self-intersecting hexagon (star polygon) Extended
Central {6} in {12}
A skew hexagon, within cube Dissected {6} projection
octahedron
Complete graph

Self-crossing hexagons

There are six self-crossing hexagons with the vertex arrangement of the regular hexagon:

Self-intersecting hexagons with regular vertices
Dih2 Dih1 Dih3
Файл:Crossed hexagon1.svg
Figure-eight
Файл:Crossed hexagon2.svg
Center-flip
Файл:Crossed hexagon3.svg
Unicursal
Файл:Crossed hexagon4.svg
Fish-tail
Файл:Crossed hexagon5.svg
Double-tail
Файл:Crossed hexagon6.svg
Triple-tail

Hexagonal structures

Файл:Giant's Causeway (13).JPG
Giant's Causeway closeup

From bees' honeycombs to the Giant's Causeway, hexagonal patterns are prevalent in nature due to their efficiency. In a hexagonal grid each line is as short as it can possibly be if a large area is to be filled with the fewest hexagons. This means that honeycombs require less wax to construct and gain much strength under compression.

Irregular hexagons with parallel opposite edges are called parallelogons and can also tile the plane by translation. In three dimensions, hexagonal prisms with parallel opposite faces are called parallelohedrons and these can tessellate 3-space by translation.

Hexagonal prism tessellations
Form Hexagonal tiling Hexagonal prismatic honeycomb
Regular Файл:Uniform tiling 63-t0.png Файл:Hexagonal prismatic honeycomb.png
Parallelogonal Файл:Isohedral tiling p6-7.png Файл:Skew hexagonal prism honeycomb.png

Tesselations by hexagons

Шаблон:Main In addition to the regular hexagon, which determines a unique tessellation of the plane, any irregular hexagon which satisfies the Conway criterion will tile the plane.

Hexagon inscribed in a conic section

Pascal's theorem (also known as the "Hexagrammum Mysticum Theorem") states that if an arbitrary hexagon is inscribed in any conic section, and pairs of opposite sides are extended until they meet, the three intersection points will lie on a straight line, the "Pascal line" of that configuration.

Cyclic hexagon

The Lemoine hexagon is a cyclic hexagon (one inscribed in a circle) with vertices given by the six intersections of the edges of a triangle and the three lines that are parallel to the edges that pass through its symmedian point.

If the successive sides of a cyclic hexagon are a, b, c, d, e, f, then the three main diagonals intersect in a single point if and only if Шаблон:Nowrap.[6]

If, for each side of a cyclic hexagon, the adjacent sides are extended to their intersection, forming a triangle exterior to the given side, then the segments connecting the circumcenters of opposite triangles are concurrent.[7]

If a hexagon has vertices on the circumcircle of an acute triangle at the six points (including three triangle vertices) where the extended altitudes of the triangle meet the circumcircle, then the area of the hexagon is twice the area of the triangle.[8]Шаблон:Rp

Hexagon tangential to a conic section

Let ABCDEF be a hexagon formed by six tangent lines of a conic section. Then Brianchon's theorem states that the three main diagonals AD, BE, and CF intersect at a single point.

In a hexagon that is tangential to a circle and that has consecutive sides a, b, c, d, e, and f,[9]

<math>a + c + e = b + d + f.</math>

Equilateral triangles on the sides of an arbitrary hexagon

Файл:Equilateral in hexagon.svg
Equilateral triangles on the sides of an arbitrary hexagon

If an equilateral triangle is constructed externally on each side of any hexagon, then the midpoints of the segments connecting the centroids of opposite triangles form another equilateral triangle.[10]Шаблон:Rp Шаблон:-

Skew hexagon

Файл:Skew polygon in triangular antiprism.png
A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D3d, [2+,6], (2*3), order 12.

A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.

A regular skew hexagon is vertex-transitive with equal edge lengths. In three dimensions it will be a zig-zag skew hexagon and can be seen in the vertices and side edges of a triangular antiprism with the same D3d, [2+,6] symmetry, order 12.

The cube and octahedron (same as triangular antiprism) have regular skew hexagons as petrie polygons.

Skew hexagons on 3-fold axes
Файл:Cube petrie.png
Cube
Файл:Octahedron petrie.png
Octahedron

Petrie polygons

The regular skew hexagon is the Petrie polygon for these higher dimensional regular, uniform and dual polyhedra and polytopes, shown in these skew orthogonal projections:

4D 5D
Файл:3-3 duoprism ortho-Dih3.png
3-3 duoprism
Файл:3-3 duopyramid ortho.png
3-3 duopyramid
Файл:5-simplex t0.svg
5-simplex

Convex equilateral hexagon

A principal diagonal of a hexagon is a diagonal which divides the hexagon into quadrilaterals. In any convex equilateral hexagon (one with all sides equal) with common side a, there exists[11]Шаблон:Rp a principal diagonal d1 such that

<math>\frac{d_1}{a} \leq 2</math>

and a principal diagonal d2 such that

<math>\frac{d_2}{a} > \sqrt{3}.</math>

Polyhedra with hexagons

There is no Platonic solid made of only regular hexagons, because the hexagons tessellate, not allowing the result to "fold up". The Archimedean solids with some hexagonal faces are the truncated tetrahedron, truncated octahedron, truncated icosahedron (of soccer ball and fullerene fame), truncated cuboctahedron and the truncated icosidodecahedron. These hexagons can be considered truncated triangles, with Coxeter diagrams of the form Шаблон:CDD and Шаблон:CDD.

There are other symmetry polyhedra with stretched or flattened hexagons, like these Goldberg polyhedron G(2,0):

There are also 9 Johnson solids with regular hexagons:

Gallery of natural and artificial hexagons

See also

References

Шаблон:Reflist

External links

Шаблон:Wiktionary


Шаблон:Center Шаблон:Polygons

  1. Cube picture
  2. Шаблон:Citation.
  3. 3,0 3,1 Шаблон:Cite journal
  4. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, Шаблон:ISBN (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  5. Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  6. Cartensen, Jens, "About hexagons", Mathematical Spectrum 33(2) (2000–2001), 37–40.
  7. Шаблон:Cite journal
  8. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).
  9. Gutierrez, Antonio, "Hexagon, Inscribed Circle, Tangent, Semiperimeter", [1] Шаблон:Webarchive, Accessed 2012-04-17.
  10. Шаблон:Cite journal
  11. Inequalities proposed in "Crux Mathematicorum", [2] Шаблон:Webarchive.