Английская Википедия:Hexagonal tiling
Шаблон:Short description Шаблон:More footnotes Шаблон:Uniform tiles db
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of Шаблон:Math or Шаблон:Math (as a truncated triangular tiling).
English mathematician John Conway called it a hextille.
The internal angle of the hexagon is 120 degrees, so three hexagons at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the square tiling.
Applications
Hexagonal tiling is the densest way to arrange circles in two dimensions. The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin, who believed that the Kelvin structure (or body-centered cubic lattice) is optimal. However, the less regular Weaire–Phelan structure is slightly better.
This structure exists naturally in the form of graphite, where each sheet of graphene resembles chicken wire, with strong covalent carbon bonds. Tubular graphene sheets have been synthesised, known as carbon nanotubes. They have many potential applications, due to their high tensile strength and electrical properties. Silicene is similar.
Chicken wire consists of a hexagonal lattice (often not regular) of wires.
-
The densest circle packing is arranged like the hexagons in this tiling
-
Chicken wire fencing
-
A carbon nanotube can be seen as a hexagon tiling on a cylindrical surface
-
Hexagonal Persian tile c.1955
The hexagonal tiling appears in many crystals. In three dimensions, the face-centered cubic and hexagonal close packing are common crystal structures. They are the densest sphere packings in three dimensions. Structurally, they comprise parallel layers of hexagonal tilings, similar to the structure of graphite. They differ in the way that the layers are staggered from each other, with the face-centered cubic being the more regular of the two. Pure copper, amongst other materials, forms a face-centered cubic lattice.
Uniform colorings
There are three distinct uniform colorings of a hexagonal tiling, all generated from reflective symmetry of Wythoff constructions. The (h,k) represent the periodic repeat of one colored tile, counting hexagonal distances as h first, and k second. The same counting is used in the Goldberg polyhedra, with a notation {p+,3}h,k, and can be applied to hyperbolic tilings for p > 6.
k-uniform | 1-uniform | 2-uniform | 3-uniform | ||||
---|---|---|---|---|---|---|---|
Symmetry | p6m, (*632) | p3m1, (*333) | p6m, (*632) | p6, (632) | |||
Picture | Файл:Uniform tiling 63-t0.svg | Файл:Uniform tiling 63-t12.svg | Файл:Uniform tiling 333-t012.svg | Файл:Truncated rhombille tiling.png | Файл:Hexagonal tiling 4-colors.svg | Файл:Hexagonal tiling 2-1.svg | Файл:Hexagonal tiling 7-colors.svg |
Colors | 1 | 2 | 3 | 2 | 4 | 2 | 7 |
(h,k) | (1,0) | (1,1) | (2,0) | (2,1) | |||
Schläfli | {6,3} | t{3,6} | t{3[3]} | ||||
Wythoff | 3 | 6 2 | 2 6 | 3 | 3 3 3 | | ||||
Coxeter | Шаблон:CDD | Шаблон:CDD | Шаблон:CDD | ||||
Conway | H | tΔ | cH=t6daH | wH=t6dsH |
The 3-color tiling is a tessellation generated by the order-3 permutohedrons.
Chamfered hexagonal tiling
A chamfered hexagonal tiling replaces edges with new hexagons and transforms into another hexagonal tiling. In the limit, the original faces disappear, and the new hexagons degenerate into rhombi, and it becomes a rhombic tiling.
Hexagons (H) | Chamfered hexagons (cH) | Rhombi (daH) | ||
---|---|---|---|---|
Файл:Uniform tiling 63-t0.svg | Файл:Chamfered hexagonal tiling.png | Файл:Truncated rhombille tiling.png | Файл:Chamfered hexagonal tiling2.png | Файл:Rhombic star tiling.png |
Related tilings
The hexagons can be dissected into sets of 6 triangles. This process leads to two 2-uniform tilings, and the triangular tiling:
Regular tiling | Dissection | 2-uniform tilings | Regular tiling | Inset | Dual Tilings | |
---|---|---|---|---|---|---|
Файл:1-uniform n1.svg Original |
Файл:Regular hexagon.svgФайл:Vertex type 3-3-3-3-3-3.svg | Файл:2-uniform n10.svg 1/3 dissected |
Файл:2-uniform n19.svg 2/3 dissected |
Файл:1-uniform n11.svg fully dissected |
Файл:Inset Variations of Dual Uniform Tiling.svg | Файл:E to IH to FH to H Insets.gif E to IH to FH to H |
The hexagonal tiling can be considered an elongated rhombic tiling, where each vertex of the rhombic tiling is stretched into a new edge. This is similar to the relation of the rhombic dodecahedron and the rhombo-hexagonal dodecahedron tessellations in 3 dimensions.
Файл:Kah 3 6 romb.png Rhombic tiling |
Файл:Uniform tiling 63-t0.svg Hexagonal tiling |
Файл:Chicken Wire close-up.jpg Fencing uses this relation |
It is also possible to subdivide the prototiles of certain hexagonal tilings by two, three, four or nine equal pentagons:
Файл:Pent-Hex-Type1-2.png Pentagonal tiling type 1 with overlays of regular hexagons (each comprising 2 pentagons). |
Файл:Pent-Hex-Type3-3.png pentagonal tiling type 3 with overlays of regular hexagons (each comprising 3 pentagons). |
Файл:Pent-Hex-Type4-4.png Pentagonal tiling type 4 with overlays of semiregular hexagons (each comprising 4 pentagons). |
Файл:Pent-Hex-Type3-9.png Pentagonal tiling type 3 with overlays of two sizes of regular hexagons (comprising 3 and 9 pentagons respectively). |
Symmetry mutations
This tiling is topologically related as a part of a sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram Шаблон:CDD, progressing to infinity. Шаблон:Hexagonal regular tilings
This tiling is topologically related to regular polyhedra with vertex figure n3, as a part of a sequence that continues into the hyperbolic plane. Шаблон:Order-3 tiling table
It is similarly related to the uniform truncated polyhedra with vertex figure n.6.6. Шаблон:Truncated figure2 table
This tiling is also part of a sequence of truncated rhombic polyhedra and tilings with [n,3] Coxeter group symmetry. The cube can be seen as a rhombic hexahedron where the rhombi are squares. The truncated forms have regular n-gons at the truncated vertices, and nonregular hexagonal faces. Шаблон:Dual quasiregular3 table
Wythoff constructions from hexagonal and triangular tilings
Like the uniform polyhedra there are eight uniform tilings that can be based on the regular hexagonal tiling (or the dual triangular tiling).
Drawing the tiles colored red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 of which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)
Шаблон:Hexagonal tiling small table
Monohedral convex hexagonal tilings
There are 3 types of monohedral convex hexagonal tilings.[1] They are all isohedral. Each has parametric variations within a fixed symmetry. Type 2 contains glide reflections, and is 2-isohedral keeping chiral pairs distinct.
1 | 2 | 3 | |
---|---|---|---|
p2, 2222 | pgg, 22× | p2, 2222 | p3, 333 |
Файл:P6-type1.png | Файл:P6-type2.png | Файл:P6-type2-chiral coloring.png | Файл:P6-type3.png |
Файл:Prototile p6-type1.png b = e B + C + D = 360° |
Файл:Prototile p6-type2.png b = e, d = f B + C + E = 360° |
Файл:Prototile p6-type3.png a = f, b = c, d = e B = D = F = 120° | |
Файл:Lattice p6-type1.png 2-tile lattice |
Файл:Lattice p6-type2.png 4-tile lattice |
Файл:Lattice p6-type3.png 3-tile lattice |
Topologically equivalent tilings
Hexagonal tilings can be made with the identical {6,3} topology as the regular tiling (3 hexagons around every vertex). With isohedral faces, there are 13 variations. Symmetry given assumes all faces are the same color. Colors here represent the lattice positions.[2] Single-color (1-tile) lattices are parallelogon hexagons.
pg (××) | p2 (2222) | p3 (333) | pmg (22*) | |||
---|---|---|---|---|---|---|
Файл:Isohedral tiling p6-1.png | Файл:Isohedral tiling p6-2.png | Файл:Isohedral tiling p6-3.png | Файл:Isohedral tiling p6-6.png | Файл:Isohedral tiling p6-9.png | Файл:Isohedral tiling p6-10.png | |
pgg (22×) | p31m (3*3) | p2 (2222) | cmm (2*22) | p6m (*632) | ||
Файл:Isohedral tiling p6-4.png | Файл:Isohedral tiling p6-5.png | Файл:Isohedral tiling p6-8.png | Файл:Isohedral tiling p6-11.png | Файл:Isohedral tiling p6-7.png | Файл:Isohedral tiling p6-12.png | Файл:Isohedral tiling p6-13.png |
Other isohedrally-tiled topological hexagonal tilings are seen as quadrilaterals and pentagons that are not edge-to-edge, but interpreted as colinear adjacent edges:
pmg (22*) | pgg (22×) | cmm (2*22) | p2 (2222) | |||
---|---|---|---|---|---|---|
Файл:Isohedral tiling p4-18.png Parallelogram |
Файл:Isohedral tiling p4-20.png Trapezoid |
Файл:Isohedral tiling p4-19.png Parallelogram |
Файл:Isohedral tiling p4-19b.png Rectangle |
Файл:Isohedral tiling p4-17.png Parallelogram |
Файл:Isohedral tiling p4-21.png Rectangle |
Файл:Isohedral tiling p4-22.png Rectangle |
p2 (2222) | pgg (22×) | p3 (333) |
---|---|---|
Файл:P5-type1.png | Файл:P5-type2.png | Файл:P5-type3.png |
The 2-uniform and 3-uniform tessellations have a rotational degree of freedom which distorts 2/3 of the hexagons, including a colinear case that can also be seen as a non-edge-to-edge tiling of hexagons and larger triangles.[3]
It can also be distorted into a chiral 4-colored tri-directional weaved pattern, distorting some hexagons into parallelograms. The weaved pattern with 2 colored faces has rotational 632 (p6) symmetry. A chevron pattern has pmg (22*) symmetry, which is lowered to p1 (°) with 3 or 4 colored tiles.
Regular | Gyrated | Regular | Weaved | Chevron |
---|---|---|---|---|
p6m, (*632) | p6, (632) | p6m (*632) | p6 (632) | p1 (°) |
Файл:Uniform tiling 63-t12.svg | Файл:Gyrated hexagonal tiling2.png | Файл:Truncated rhombille tiling.png | Файл:Weaved hexagonal tiling2.png | Файл:Chevron hexagonal tiling-3-color.png |
p3m1, (*333) | p3, (333) | p6m (*632) | p2 (2222) | p1 (°) |
Файл:Uniform tiling 333-t012.svg | Файл:Gyrated hexagonal tiling1.png | Файл:Hexagonal tiling 4-colors.png | Файл:Weaved hexagonal tiling.png | Файл:Chevron hexagonal tiling-4-color.png |
Circle packing
The hexagonal tiling can be used as a circle packing, placing equal-diameter circles at the center of every point. Every circle is in contact with 3 other circles in the packing (kissing number).[4] The gap inside each hexagon allows for one circle, creating the densest packing from the triangular tiling, with each circle in contact with a maximum of 6 circles.
Related regular complex apeirogons
There are 2 regular complex apeirogons, sharing the vertices of the hexagonal tiling. Regular complex apeirogons have vertices and edges, where edges can contain 2 or more vertices. Regular apeirogons p{q}r are constrained by: 1/p + 2/q + 1/r = 1. Edges have p vertices, and vertex figures are r-gonal.[5]
The first is made of 2-edges, three around every vertex, the second has hexagonal edges, three around every vertex. A third complex apeirogon, sharing the same vertices, is quasiregular, which alternates 2-edges and 6-edges.
Файл:Complex apeirogon 2-12-3.png | Файл:Complex apeirogon 6-4-3.png | Файл:Truncated complex polygon 6-6-2.png |
2{12}3 or Шаблон:CDD | 6{4}3 or Шаблон:CDD | Шаблон:CDD |
---|
See also
- Hexagonal lattice
- Hexagonal prismatic honeycomb
- Tilings of regular polygons
- List of uniform tilings
- List of regular polytopes
- Hexagonal tiling honeycomb
- Hex map board game design
References
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, Шаблон:ISBN p. 296, Table II: Regular honeycombs
- Шаблон:Cite book (Chapter 2.1: Regular and uniform tilings, pp. 58–65)
- Шаблон:The Geometrical Foundation of Natural Structure (book)
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, Шаблон:ISBN [1]
External links
Шаблон:Honeycombs Шаблон:Tessellation
- ↑ Tilings and patterns, Sec. 9.3 Other Monohedral tilings by convex polygons
- ↑ Tilings and patterns, from list of 107 isohedral tilings, pp. 473–481
- ↑ Tilings and patterns, uniform tilings that are not edge-to-edge
- ↑ Order in Space: A design source book, Keith Critchlow, pp. 74–75, pattern 2
- ↑ Coxeter, Regular Complex Polytopes, pp. 111–112, p. 136.
- Страницы с неработающими файловыми ссылками
- Английская Википедия
- Euclidean tilings
- Hexagonal tilings
- Isogonal tilings
- Isohedral tilings
- Regular tilings
- Regular tessellations
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Английской Википедии