Английская Википедия:Hexagonal tiling

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:More footnotes Шаблон:Uniform tiles db

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of Шаблон:Math or Шаблон:Math (as a truncated triangular tiling).

English mathematician John Conway called it a hextille.

The internal angle of the hexagon is 120 degrees, so three hexagons at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the square tiling.

Applications

Hexagonal tiling is the densest way to arrange circles in two dimensions. The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin, who believed that the Kelvin structure (or body-centered cubic lattice) is optimal. However, the less regular Weaire–Phelan structure is slightly better.

This structure exists naturally in the form of graphite, where each sheet of graphene resembles chicken wire, with strong covalent carbon bonds. Tubular graphene sheets have been synthesised, known as carbon nanotubes. They have many potential applications, due to their high tensile strength and electrical properties. Silicene is similar.

Chicken wire consists of a hexagonal lattice (often not regular) of wires.

The hexagonal tiling appears in many crystals. In three dimensions, the face-centered cubic and hexagonal close packing are common crystal structures. They are the densest sphere packings in three dimensions. Structurally, they comprise parallel layers of hexagonal tilings, similar to the structure of graphite. They differ in the way that the layers are staggered from each other, with the face-centered cubic being the more regular of the two. Pure copper, amongst other materials, forms a face-centered cubic lattice.

Uniform colorings

There are three distinct uniform colorings of a hexagonal tiling, all generated from reflective symmetry of Wythoff constructions. The (h,k) represent the periodic repeat of one colored tile, counting hexagonal distances as h first, and k second. The same counting is used in the Goldberg polyhedra, with a notation {p+,3}h,k, and can be applied to hyperbolic tilings for p > 6.

k-uniform 1-uniform 2-uniform 3-uniform
Symmetry p6m, (*632) p3m1, (*333) p6m, (*632) p6, (632)
Picture Файл:Uniform tiling 63-t0.svg Файл:Uniform tiling 63-t12.svg Файл:Uniform tiling 333-t012.svg Файл:Truncated rhombille tiling.png Файл:Hexagonal tiling 4-colors.svg Файл:Hexagonal tiling 2-1.svg Файл:Hexagonal tiling 7-colors.svg
Colors 1 2 3 2 4 2 7
(h,k) (1,0) (1,1) (2,0) (2,1)
Schläfli {6,3} t{3,6} t{3[3]}
Wythoff 3 | 6 2 2 6 | 3 3 3 3 |
Coxeter Шаблон:CDD Шаблон:CDD Шаблон:CDD
Conway H cH=t6daH wH=t6dsH

The 3-color tiling is a tessellation generated by the order-3 permutohedrons.

Chamfered hexagonal tiling

A chamfered hexagonal tiling replaces edges with new hexagons and transforms into another hexagonal tiling. In the limit, the original faces disappear, and the new hexagons degenerate into rhombi, and it becomes a rhombic tiling.

Файл:ChamferedHexTilingAnimation.gif
The chamfered hexagonal tiling degenerates into a rhombille tiling at the limit
Hexagons (H) Chamfered hexagons (cH) Rhombi (daH)
Файл:Uniform tiling 63-t0.svg Файл:Chamfered hexagonal tiling.png Файл:Truncated rhombille tiling.png Файл:Chamfered hexagonal tiling2.png Файл:Rhombic star tiling.png

Related tilings

The hexagons can be dissected into sets of 6 triangles. This process leads to two 2-uniform tilings, and the triangular tiling:

Regular tiling Dissection 2-uniform tilings Regular tiling Inset Dual Tilings
Файл:1-uniform n1.svg
Original
Файл:Regular hexagon.svgФайл:Vertex type 3-3-3-3-3-3.svg Файл:2-uniform n10.svg
1/3 dissected
Файл:2-uniform n19.svg
2/3 dissected
Файл:1-uniform n11.svg
fully dissected
Файл:Inset Variations of Dual Uniform Tiling.svg Файл:E to IH to FH to H Insets.gif
E to IH to FH to H

The hexagonal tiling can be considered an elongated rhombic tiling, where each vertex of the rhombic tiling is stretched into a new edge. This is similar to the relation of the rhombic dodecahedron and the rhombo-hexagonal dodecahedron tessellations in 3 dimensions.

Файл:Kah 3 6 romb.png
Rhombic tiling
Файл:Uniform tiling 63-t0.svg
Hexagonal tiling
Файл:Chicken Wire close-up.jpg
Fencing uses this relation

It is also possible to subdivide the prototiles of certain hexagonal tilings by two, three, four or nine equal pentagons:

Файл:Pent-Hex-Type1-2.png
Pentagonal tiling type 1 with overlays of regular hexagons (each comprising 2 pentagons).
Файл:Pent-Hex-Type3-3.png
pentagonal tiling type 3 with overlays of regular hexagons (each comprising 3 pentagons).
Файл:Pent-Hex-Type4-4.png
Pentagonal tiling type 4 with overlays of semiregular hexagons (each comprising 4 pentagons).
Файл:Pent-Hex-Type3-9.png
Pentagonal tiling type 3 with overlays of two sizes of regular hexagons (comprising 3 and 9 pentagons respectively).

Symmetry mutations

This tiling is topologically related as a part of a sequence of regular tilings with hexagonal faces, starting with the hexagonal tiling, with Schläfli symbol {6,n}, and Coxeter diagram Шаблон:CDD, progressing to infinity. Шаблон:Hexagonal regular tilings

This tiling is topologically related to regular polyhedra with vertex figure n3, as a part of a sequence that continues into the hyperbolic plane. Шаблон:Order-3 tiling table

It is similarly related to the uniform truncated polyhedra with vertex figure n.6.6. Шаблон:Truncated figure2 table

This tiling is also part of a sequence of truncated rhombic polyhedra and tilings with [n,3] Coxeter group symmetry. The cube can be seen as a rhombic hexahedron where the rhombi are squares. The truncated forms have regular n-gons at the truncated vertices, and nonregular hexagonal faces. Шаблон:Dual quasiregular3 table

Wythoff constructions from hexagonal and triangular tilings

Like the uniform polyhedra there are eight uniform tilings that can be based on the regular hexagonal tiling (or the dual triangular tiling).

Drawing the tiles colored red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 of which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)

Шаблон:Hexagonal tiling small table

Monohedral convex hexagonal tilings

There are 3 types of monohedral convex hexagonal tilings.[1] They are all isohedral. Each has parametric variations within a fixed symmetry. Type 2 contains glide reflections, and is 2-isohedral keeping chiral pairs distinct.

3 types of monohedral convex hexagonal tilings
1 2 3
p2, 2222 pgg, 22× p2, 2222 p3, 333
Файл:P6-type1.png Файл:P6-type2.png Файл:P6-type2-chiral coloring.png Файл:P6-type3.png
Файл:Prototile p6-type1.png
b = e
B + C + D = 360°
Файл:Prototile p6-type2.png
b = e, d = f
B + C + E = 360°
Файл:Prototile p6-type3.png
a = f, b = c, d = e
B = D = F = 120°
Файл:Lattice p6-type1.png
2-tile lattice
Файл:Lattice p6-type2.png
4-tile lattice
Файл:Lattice p6-type3.png
3-tile lattice

Topologically equivalent tilings

Hexagonal tilings can be made with the identical {6,3} topology as the regular tiling (3 hexagons around every vertex). With isohedral faces, there are 13 variations. Symmetry given assumes all faces are the same color. Colors here represent the lattice positions.[2] Single-color (1-tile) lattices are parallelogon hexagons.

13 isohedrally-tiled hexagons
pg (××) p2 (2222) p3 (333) pmg (22*)
Файл:Isohedral tiling p6-1.png Файл:Isohedral tiling p6-2.png Файл:Isohedral tiling p6-3.png Файл:Isohedral tiling p6-6.png Файл:Isohedral tiling p6-9.png Файл:Isohedral tiling p6-10.png
pgg (22×) p31m (3*3) p2 (2222) cmm (2*22) p6m (*632)
Файл:Isohedral tiling p6-4.png Файл:Isohedral tiling p6-5.png Файл:Isohedral tiling p6-8.png Файл:Isohedral tiling p6-11.png Файл:Isohedral tiling p6-7.png Файл:Isohedral tiling p6-12.png Файл:Isohedral tiling p6-13.png

Other isohedrally-tiled topological hexagonal tilings are seen as quadrilaterals and pentagons that are not edge-to-edge, but interpreted as colinear adjacent edges:

Isohedrally-tiled quadrilaterals
pmg (22*) pgg (22×) cmm (2*22) p2 (2222)
Файл:Isohedral tiling p4-18.png
Parallelogram
Файл:Isohedral tiling p4-20.png
Trapezoid
Файл:Isohedral tiling p4-19.png
Parallelogram
Файл:Isohedral tiling p4-19b.png
Rectangle
Файл:Isohedral tiling p4-17.png
Parallelogram
Файл:Isohedral tiling p4-21.png
Rectangle
Файл:Isohedral tiling p4-22.png
Rectangle
Isohedrally-tiled pentagons
p2 (2222) pgg (22×) p3 (333)
Файл:P5-type1.png Файл:P5-type2.png Файл:P5-type3.png

The 2-uniform and 3-uniform tessellations have a rotational degree of freedom which distorts 2/3 of the hexagons, including a colinear case that can also be seen as a non-edge-to-edge tiling of hexagons and larger triangles.[3]

It can also be distorted into a chiral 4-colored tri-directional weaved pattern, distorting some hexagons into parallelograms. The weaved pattern with 2 colored faces has rotational 632 (p6) symmetry. A chevron pattern has pmg (22*) symmetry, which is lowered to p1 (°) with 3 or 4 colored tiles.

Regular Gyrated Regular Weaved Chevron
p6m, (*632) p6, (632) p6m (*632) p6 (632) p1 (°)
Файл:Uniform tiling 63-t12.svg Файл:Gyrated hexagonal tiling2.png Файл:Truncated rhombille tiling.png Файл:Weaved hexagonal tiling2.png Файл:Chevron hexagonal tiling-3-color.png
p3m1, (*333) p3, (333) p6m (*632) p2 (2222) p1 (°)
Файл:Uniform tiling 333-t012.svg Файл:Gyrated hexagonal tiling1.png Файл:Hexagonal tiling 4-colors.png Файл:Weaved hexagonal tiling.png Файл:Chevron hexagonal tiling-4-color.png

Circle packing

The hexagonal tiling can be used as a circle packing, placing equal-diameter circles at the center of every point. Every circle is in contact with 3 other circles in the packing (kissing number).[4] The gap inside each hexagon allows for one circle, creating the densest packing from the triangular tiling, with each circle in contact with a maximum of 6 circles.

Файл:1-uniform-1-circlepack.svg

Related regular complex apeirogons

There are 2 regular complex apeirogons, sharing the vertices of the hexagonal tiling. Regular complex apeirogons have vertices and edges, where edges can contain 2 or more vertices. Regular apeirogons p{q}r are constrained by: 1/p + 2/q + 1/r = 1. Edges have p vertices, and vertex figures are r-gonal.[5]

The first is made of 2-edges, three around every vertex, the second has hexagonal edges, three around every vertex. A third complex apeirogon, sharing the same vertices, is quasiregular, which alternates 2-edges and 6-edges.

Файл:Complex apeirogon 2-12-3.png Файл:Complex apeirogon 6-4-3.png Файл:Truncated complex polygon 6-6-2.png
2{12}3 or Шаблон:CDD 6{4}3 or Шаблон:CDD Шаблон:CDD

See also

Шаблон:Commons category

References

Шаблон:Reflist

External links

Шаблон:Honeycombs Шаблон:Tessellation

  1. Tilings and patterns, Sec. 9.3 Other Monohedral tilings by convex polygons
  2. Tilings and patterns, from list of 107 isohedral tilings, pp. 473–481
  3. Tilings and patterns, uniform tilings that are not edge-to-edge
  4. Order in Space: A design source book, Keith Critchlow, pp. 74–75, pattern 2
  5. Coxeter, Regular Complex Polytopes, pp. 111–112, p. 136.