Английская Википедия:Hidden linear function problem

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Use dmy dates The hidden linear function problem, is a search problem that generalizes the Bernstein–Vazirani problem.[1] In the Bernstein–Vazirani problem, the hidden function is implicitly specified in an oracle; while in the 2D hidden linear function problem (2D HLF), the hidden function is explicitly specified by a matrix and a binary vector. 2D HLF can be solved exactly by a constant-depth quantum circuit restricted to a 2-dimensional grid of qubits using bounded fan-in gates but can't be solved by any sub-exponential size, constant-depth classical circuit using unbounded fan-in AND, OR, and NOT gates.[2] While Bernstein–Vazirani's problem was designed to prove an oracle separation between complexity classes BQP and BPP, 2D HLF was designed to prove an explicit separation between the circuit classes <math>QNC^{0}</math> and <math>NC^{0}</math> (<math>QNC^{0} \nsubseteq NC^{0}</math>).[1]

2D HLF problem statement

Given <math>A \in \mathbb{F}_2^{n \times n}</math>(an upper- triangular binary matrix of size <math>n \times n</math>) and <math>b \in \mathbb{F}_2^n</math> (a binary vector of length <math>n</math>),

define a function <math>q : \mathbb{F}_2^n \to \mathbb{Z}_4</math>:

<math>q(x) = (2 x^T A x + b^T x) \bmod 4 = \left(2 \sum_{i,j}A_{i,j} x_i x_j + \sum_i b_i x_i \right) \bmod 4 , </math>

and

<math>\mathcal{L}_q = \Big\{x \in \mathbb{F}_2^n : q(x \oplus y) = (q(x) + q(y)) \bmod 4 ~~ \forall y \in \mathbb{F}_2^n \Big\}.</math>

There exists a <math>z \in \mathbb{F}_2^n</math> such that

<math>q(x) = 2 z^T x ~~\forall x \in \mathcal{L}_q.</math>

Find <math>z</math>.[1]

2D HLF algorithm

With 3 registers; the first holding <math>A</math>, the second containing <math>b</math> and the third carrying an <math>n</math>-qubit state, the circuit has controlled gates which implement <math>U_q = \prod_{1 < i < j < n} CZ_{ij}^{A_{ij}} \cdot \bigotimes_{j=1}^n S_j^{b_j}</math> from the first two registers to the third.

This problem can be solved by a quantum circuit, <math>H^{\otimes n} U_q H^{\otimes n} \mid 0^n \rangle</math>, where H is the Hadamard gate, S is the S gate and CZ is CZ gate. It is solved by this circuit because with <math>p(z) = \left| \langle z | H^{\otimes n} U_q H ^ {\otimes n} | 0^n \rangle \right|^2</math>, <math>p(z)>0</math> iff <math>z</math> is a solution.[1]

References

Шаблон:Reflist

External links

Шаблон:Quantum computing

  1. 1,0 1,1 1,2 1,3 Ошибка цитирования Неверный тег <ref>; для сносок Bravyi-Gosset-König_2018 не указан текст
  2. Ошибка цитирования Неверный тег <ref>; для сносок Watts-Kothari-Schaeffer-Tal_2019 не указан текст