Английская Википедия:Hilbert–Schmidt operator

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator <math> A \colon H \to H </math> that acts on a Hilbert space <math> H </math> and has finite Hilbert–Schmidt norm

<math display="block">\|A\|^2_{\operatorname{HS}} \ \stackrel{\text{def}}{=}\ \sum_{i \in I} \|Ae_i\|^2_H,</math>

where <math>\{e_i: i \in I\}</math> is an orthonormal basis.[1][2] The index set <math> I </math> need not be countable. However, the sum on the right must contain at most countably many non-zero terms, to have meaning.Шаблон:Sfn This definition is independent of the choice of the orthonormal basis. In finite-dimensional Euclidean space, the Hilbert–Schmidt norm <math>\|\cdot\|_\text{HS}</math> is identical to the Frobenius norm.

||·||Шаблон:Sub is well defined

The Hilbert–Schmidt norm does not depend on the choice of orthonormal basis. Indeed, if <math>\{e_i\}_{i\in I}</math> and <math>\{f_j\}_{j\in I}</math> are such bases, then <math display="block"> \sum_i \|Ae_i\|^2 = \sum_{i,j} \left| \langle Ae_i, f_j\rangle \right|^2 = \sum_{i,j} \left| \langle e_i, A^*f_j\rangle \right|^2 = \sum_j\|A^* f_j\|^2. </math> If <math>e_i = f_i, </math> then <math display="inline"> \sum_i \|Ae_i\|^2 = \sum_i\|A^* e_i\|^2. </math> As for any bounded operator, <math> A = A^{**}. </math> Replacing <math> A </math> with <math> A^* </math> in the first formula, obtain <math display="inline"> \sum_i \|A^* e_i\|^2 = \sum_j\|A f_j\|^2. </math> The independence follows.

Examples

An important class of examples is provided by Hilbert–Schmidt integral operators. Every bounded operator with a finite-dimensional range (these are called operators of finite rank) is a Hilbert–Schmidt operator. The identity operator on a Hilbert space is a Hilbert–Schmidt operator if and only if the Hilbert space is finite-dimensional. Given any <math>x</math> and <math>y</math> in <math>H</math>, define <math>x \otimes y : H \to H</math> by <math>(x \otimes y)(z) = \langle z, y \rangle x</math>, which is a continuous linear operator of rank 1 and thus a Hilbert–Schmidt operator; moreover, for any bounded linear operator <math>A</math> on <math>H</math> (and into <math>H</math>), <math>\operatorname{Tr}\left( A\left( x \otimes y \right) \right) = \left\langle A x, y \right\rangle</math>.Шаблон:Sfn

If <math>T: H \to H</math> is a bounded compact operator with eigenvalues <math>\ell_1, \ell_2, \dots</math> of <math>|T| = \sqrt{T^*T}</math>, where each eigenvalue is repeated as often as its multiplicity, then <math>T</math> is Hilbert–Schmidt if and only if <math display="inline">\sum_{i=1}^{\infty} \ell_i^2 < \infty</math>, in which case the Hilbert–Schmidt norm of <math>T</math> is <math display="inline">\left\| T \right\|_{\operatorname{HS}} = \sqrt{\sum_{i=1}^{\infty} \ell_i^2}</math>.Шаблон:Sfn

If <math>k \in L^2\left( \mu \times \mu \right)</math>, where <math>\left( X, \Omega, \mu \right)</math> is a measure space, then the integral operator <math>K : L^2\left( \mu \right) \to L^2\left( \mu \right)</math> with kernel <math>k</math> is a Hilbert–Schmidt operator and <math>\left\| K \right\|_{\operatorname{HS}} = \left\| k \right\|_2</math>.Шаблон:Sfn

Space of Hilbert–Schmidt operators

The product of two Hilbert–Schmidt operators has finite trace-class norm; therefore, if A and B are two Hilbert–Schmidt operators, the Hilbert–Schmidt inner product can be defined as

<math display="block">\langle A, B \rangle_\text{HS} = \operatorname{Tr}(A^* B) = \sum_i \langle Ae_i, Be_i \rangle.</math>

The Hilbert–Schmidt operators form a two-sided *-ideal in the Banach algebra of bounded operators on Шаблон:Math. They also form a Hilbert space, denoted by Шаблон:Math or Шаблон:Math, which can be shown to be naturally isometrically isomorphic to the tensor product of Hilbert spaces

<math display="block">H^* \otimes H,</math>

where Шаблон:Math is the dual space of Шаблон:Math. The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space).Шаблон:Sfn The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with the Hilbert–Schmidt norm).Шаблон:Sfn

The set of Hilbert–Schmidt operators is closed in the norm topology if, and only if, Шаблон:Math is finite-dimensional.

Properties

See also

References

Шаблон:Reflist

Шаблон:Hilbert space Шаблон:Topological tensor products and nuclear spaces Шаблон:Functional analysis