Английская Википедия:Hill differential equation

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Distinguish

In mathematics, the Hill equation or Hill differential equation is the second-order linear ordinary differential equation

<math> \frac{d^2y}{dt^2} + f(t) y = 0, </math>

where <math> f(t)</math> is a periodic function with minimal period <math> \pi </math> and average zero. By these we mean that for all <math>t </math>

<math>f(t+\pi)=f(t), </math>

and

<math>\int_0^\pi f(t) \,dt=0, </math>

and if <math> p</math> is a number with <math>0 < p < \pi </math>, the equation <math> f(t+p) = f(t) </math> must fail for some <math> t </math>.[1] It is named after George William Hill, who introduced it in 1886.[2]

Because <math> f(t) </math> has period <math>\pi </math>, the Hill equation can be rewritten using the Fourier series of <math> f(t)</math>:

<math>\frac{d^2y}{dt^2}+\left(\theta_0+2\sum_{n=1}^\infty \theta_n \cos(2nt)+\sum_{m=1}^\infty \phi_m \sin(2mt) \right ) y=0. </math>

Important special cases of Hill's equation include the Mathieu equation (in which only the terms corresponding to n = 0, 1 are included) and the Meissner equation.

Hill's equation is an important example in the understanding of periodic differential equations. Depending on the exact shape of <math> f(t) </math>, solutions may stay bounded for all time, or the amplitude of the oscillations in solutions may grow exponentially.[3] The precise form of the solutions to Hill's equation is described by Floquet theory. Solutions can also be written in terms of Hill determinants.[1]

Aside from its original application to lunar stability,[2] the Hill equation appears in many settings including in modeling of a quadrupole mass spectrometer,[4] as the one-dimensional Schrödinger equation of an electron in a crystal,[5] quantum optics of two-level systems, accelerator physics and electromagnetic structures that are periodic in space[6] and/or in time.[7]

References

Шаблон:Reflist

External links

Шаблон:Authority control


Шаблон:Mathapplied-stub

  1. 1,0 1,1 Шаблон:Cite book
  2. 2,0 2,1 Шаблон:Cite journal
  3. Шаблон:Cite book
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Brillouin, L. (1946). Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, McGraw–Hill, New York
  7. Шаблон:Cite journal