Английская Википедия:Hydrogen-powered aircraft

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:CCCP-85035 Tupolev Tu.155 (7286104458).jpg
The hydrogen-powered Tu-155 prototype made its first flight on 15 April 1988.

A hydrogen-powered aircraft is an aeroplane that uses hydrogen fuel as a power source. Hydrogen can either be burned in a jet engine or another kind of internal combustion engine, or can be used to power a fuel cell to generate electricity to power an electric propulsor. It cannot be stored in a traditional wet wing, and hydrogen tanks have to be housed in the fuselage or be supported by the wing.

Hydrogen, which can be produced from low-carbon power and can produce zero emissions, can reduce the environmental impact of aviation. Boeing acknowledges the technology potential and Airbus plans to launch a first commercial hydrogen-powered aircraft by 2035.[1] McKinsey & Company forecast hydrogen aircraft entering the market in the late 2030s and scaling up through 2050, when they could account for a third of aviation's energy demand.[2]

Hydrogen properties

Файл:EnergyDesityHydrogenKerosene.svg
Energy density of fuels: horizontal per mass, vertical per volume. Kerosene is highlighted in red and hydrogen in blue.

Hydrogen has a specific energy of 119.9 MJ/kg, compared to ~43.5 MJ/kg for usual liquid fuels,[3] 2.8 times higher. However, it has an energy density of 10.05 kJ/L at normal atmospheric pressure and temperature, compared to ~31293 kJ/L for liquid fuels,[3] 3114 times lower. When pressurised to Шаблон:Cvt, it reaches 4,500 kJ/L,[3] still 7 times lower than liquid fuels. Cooled at Шаблон:Cvt, liquid hydrogen has an energy density of 8,491 kJ/L,[3] 3.7 times lower than liquid fuels.

Aircraft design

The low volumetric energy density of hydrogen poses challenges when designing an aircraft, where weight and exposed surface area are critical.[4] To reduce the size of the tanks liquid hydrogen will be used, requiring cryogenic fuel tanks.[4][5] Cylindrical tanks minimise surface for minimal thermal insulation weight, leading towards tanks in the fuselage rather than wet wings in conventional aircraft.[4][5] Airplane volume and drag will be increased somewhat by larger fuel tanks.[6] A larger fuselage adds more skin friction drag due to the extra wetted area. The extra tank weight is offset by dramatically lower liquid hydrogen fuel weight.

Gaseous hydrogen may be used for short-haul aircraft.[7] Liquid hydrogen might be needed for long-haul aircraft.

Hydrogen's high specific energy means it would need less fuel weight for the same range, ignoring the repercussions of added volume and tank weight.[5] As airliners have a fuel fraction of the Maximum Takeoff Weight MTOW between 26% for medium-haul to 45% for long-haul, maximum fuel weight could be reduced to 9% to 16% of the MTOW.

Fuel cells make sense for general aviation and regional aircraft but their engine efficiency is less than large gas turbines. They are more efficient than modern 7 to 90-passenger turboprop airliners such as the DASH 8. [6] The efficiency of a hydrogen-fueled aircraft is a trade-off of the larger wetted area, lower fuel weight, and added tank weight, varying with the aircraft size.Шаблон:Citation needed Hydrogen is suited for short-range airliners. While longer-range aircraft need new aircraft designs.[8]

Liquid hydrogen is one of the best coolants used in engineering, and precooled jet engines have been proposed to use this property for cooling the intake air of hypersonic aircraft, or even for cooling the aircraft's skin itself, particularly for scramjet-powered aircraft.[9]

A study in the UK, NAPKIN (New Aviation, Propulsion Knowledge and Innovation Network), with collaboration from Heathrow Airport, Rolls-Royce, GKN Aerospace, and Cranfield Aerospace solutions, has investigated the potential of new hydrogen-powered aircraft designs to reduce the environmental impact of aviation.[10] The aircraft designers have proposed a range of hydrogen-fuelled aircraft concepts, ranging from 7 to 90 seats, exploring the use of hydrogen with fuel cells and gas turbines to replace conventional aircraft engines powered by fossil fuels. The findings suggest that in the UK hydrogen-powered aircraft could be commercially viable for short-haul and regional flights by the second half of the 2020s with airlines potentially able to replace the entire UK regional fleet with hydrogen aircraft by 2040.[10] However, the report highlighted that national supply, and the price of green liquid hydrogen relative to fossil kerosene are critical factors in determining uptake of hydrogen aircraft by airline operators. Modeling showed that, if hydrogen prices approach $1/kg, hydrogen aircraft uptake could cover almost 100% of the UK domestic market.[10]

Emissions and environmental impact

Hydrogen aircraft using a fuel cell design are zero emission in operation, whereas aircraft using hydrogen as a fuel for a jet engine or an internal combustion engine are zero emission for [[CO2|Шаблон:CO2]] (a greenhouse gas which contributes to global climate change) but not for [[NOx|Шаблон:NOx]] (a local air pollutant). The burning of hydrogen in air leads to the production of Шаблон:NOx, i.e., the Шаблон:Chem + ½Шаблон:ChemШаблон:Chem reaction in a nitrogen-rich environment also causes the production of Шаблон:NOx.[11] However, hydrogen combustion produces up to 90% less nitrogen oxides than kerosene fuel, and it eliminates the formation of particulate matter.[5]

If hydrogen is available in quantity from low-carbon power such as wind or nuclear, its use in aircraft will produce fewer greenhouse gases than current aircraft: water vapor and a small amount of nitrogen oxide. Currently very little hydrogen is produced using low-carbon energy sources.[12]Шаблон:Not in ref

A 2020 study by the EU Clean Sky 2 and Fuel Cells and Hydrogen 2 Joint Undertakings found that hydrogen could power aircraft by 2035 for short-range aircraft.[8] A short-range aircraft (< Шаблон:Cvt) with hybrid Fuel cell/Turbines could reduce climate impact by 70–80% for a 20–30% additional cost, a medium-range airliner with H2 turbines could have a 50–60% reduced climate impact for a 30–40% overcost, and a long-range aircraft (> Шаблон:Cvt) also with H2 turbines could reduce climate impact by 40–50% for a 40–50% additional cost.[8] Research and development would be required, in aircraft technology and into hydrogen infrastructure, regulations and certification standards.[8]

History

Demonstrations

Файл:Boeing's Phantom Eye lift off.jpg
The hydrogen powered Boeing Phantom Eye UAV first flew on 1 June 2012.
Файл:HY4 2016-09-29 ueber Flughafen Stuttgart.jpg
the hydrogen fuel cell-powered HY4 made its first flight in 2016.

In February 1957, a Martin B-57B of the NACA flew on hydrogen for 20 min for one of its two Wright J65 engines rather than jet fuel.[13] On 15 April 1988, the Tu-155 first flew as the first hydrogen-powered experimental aircraft,[14] an adapted Tu-154 airliner.

Boeing converted a two-seat Diamond DA20 to run on a fuel cell designed and built by Intelligent Energy.[15] It first flew on April 3, 2008.[16] The Antares DLR-H2 is a hydrogen-powered aeroplane from Lange Aviation and the German aerospace center.[17] In July 2010, Boeing unveiled its hydrogen powered Phantom Eye UAV, that uses two converted Ford Motor Company piston engines.[18]

In 2010, the Rapid 200FC concluded six flight tests fueled by gaseous hydrogen. The aircraft and the electric and energy system was developed within the European Union's Шаблон:Abbr project coordinated by the Politecnico di Torino.[19] Hydrogen gas is stored at 350 bar, feeding a Шаблон:Cvt fuel cell powering a Шаблон:Cvt electric motor along a Шаблон:Cvt lithium polymer battery pack.

On January 11, 2011, an AeroVironment Global Observer unmanned aircraft completed its first flight powered by a hydrogen-fueled propulsion system.[20]

Developed by Germany's DLR Institute of Engineering Thermodynamics, the DLR HY4 four-seater was powered by a hydrogen fuel cell, its first flight took place on September 29, 2016.[21] It has the possibility to store Шаблон:Cvt of hydrogen, 4x11 kW fuel cells and 2x10 kWh batteries.[22]Шаблон:Better source needed

On 19 January 2023, ZeroAvia flew its Dornier 228 testbed with one turboprop replaced by a prototype hydrogen-electric powertrain in the cabin, consisting of two fuel cells and a lithium-ion battery for peak power.[23] The aim is to have a certifiable system by 2025 to power airframes carrying up to 19 passengers over Шаблон:Cvt.[23]

On 2 March 2023, Universal Hydrogen flew a Dash 8 40-passenger testbed with one engine powered by their hydrogen-electric powertrain. The company has received an order from Connect Airways to convert 75 ATR 72-600 with their hydrogen powertrains.[24]

Aircraft projects

In 1975, Lockheed prepared a study of liquid hydrogen fueled subsonic transport aircraft for NASA Langley, exploring airliners carrying 130 passengers over 2,780 km (1500 nmi); 200 passengers over 5,560 km (3,000 nmi); and 400 passengers over 9,265 km (5,000 nmi).[25]

Between April 2000 and May 2002, the European Commission funded half of the Airbus-led Cryoplane Study, assessing the configurations, systems, engines, infrastructure, safety, environmental compatibility and transition scenarios.[26] Multiple configurations were envisioned: a 12 passenger business jet with a Шаблон:Cvt range, regional airliner for 44 passengers over Шаблон:Cvt and 70 passengers over Шаблон:Cvt, a medium range aircraft for 185 passengers over Шаблон:Cvt and long range aircraft for 380 to 550 passengers over Шаблон:Cvt.[27]

In September 2020, Airbus presented three ZEROe hydrogen-fuelled concepts aiming for commercial service by 2035:[28] a 100-passenger turboprop, a 200-passenger turbofan, and a futuristic design based around a blended wing body.[29] The aircraft are powered by gas turbines rather than fuel cells.[30]

In December 2021, the UK Aerospace Technology Institute (ATI) presented its FlyZero study of cryogenic liquid hydrogen used in gas turbines for a 279-passenger design with Шаблон:Cvt of range.[31] ATI is supported by Airbus, Rolls-Royce, GKN, Spirit, General Electric, Reaction Engines, Easyjet, NATS, Belcan, Eaton, Mott MacDonald and the MTC.

In August 2021 the UK Government claimed it was the first to have a Hydrogen Strategy. This report included a suggested strategy for hydrogen powered aircraft along with other transport modes.[32]Шаблон:Importance-inline

In March 2022, FlyZero detailed its three concept aircraft:

Propulsion projects

In March 2021, Cranfield Aerospace Solutions announced the Project Fresson switched from batteries to hydrogen for the nine-passenger Britten-Norman Islander retrofit for a September 2022 demonstration.[34] Project Fresson is supported by the Aerospace Technology Institute in partnership with the UK Department for Business, Energy & Industrial Strategy and Innovate UK.

Pratt & Whitney wants to associate its geared turbofan architecture with its Hydrogen Steam Injected, Inter‐Cooled Turbine Engine (HySIITE) project, to avoid carbon dioxide emissions, reduce NOx emissions by 80%, and reduce fuel consumption by 35% compared with the current jet-fuel PW1100G, for a service entry by 2035 with a compatible airframe.[35] On 21 February 2022, the US Department of Energy through the OPEN21 scheme run by its Advanced Research Projects Agency-Energy (ARPA-E) awarded P&W $3.8 million for a two-year early stage research initiative, to develop the combustor and the heat exchanger used to recover water vapour in the exhaust stream, injected into the combustor to increase its power, and into the compressor as an intercooler, and into the turbine as a coolant.[35]

In February 2022, Airbus announced a demonstration of a liquid hydrogen-fueled turbofan, with CFM International modifying the combustor, fuel system and control system of a GE Passport, mounted on a fuselage pylon on an A380 prototype, for a first flight expected within five years.[36]

Proposed aircraft and prototypes

Historical

Projects

  • Universal Hydrogen (fuel cell powered Dash 8-300) the largest aircraft ever to cruise mainly on hydrogen power[41]

See also

References

Шаблон:Reflist

External links