Английская Википедия:Hydrotalcite

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox mineral Hydrotalcite, or formerly also völknerite,[1] is a layered double hydroxide (LDH) of general formula Шаблон:Chem·4Шаблон:Chem, whose name is derived from its resemblance with talc and its high water content. Multiple structures containing loosely bound carbonate ions exist. The easily exchanged carbonates allow for applications of the mineral in wastewater treatment and nuclear fuel reprocessing.

Structure and discovery

It was first described in 1842 for an occurrence in a serpentine–magnesite deposit in Snarum, Modum, Buskerud, Norway.[2] It occurs as an alteration mineral in serpentinite in association with serpentine, dolomite and hematite.[3] The layers of the structure stack in multiple ways, to produce a 3-layer rhombohedral structure (3R polytype), or a 2-layer hexagonal structure (2H polytype) formerly known as manasseite. The two polytypes are often intergrown.[2][3][4]

Applications

Nuclear fuel reprocessing

Hydrotalcite has been studied as potential getter for iodide in order to scavenge the long-lived 129I (T1/2 = 15.7 million years) and also other fission products such as 79Se (T1/2 = 327,000 years) and 99Tc, (T1/2 = 211,000 years) present in spent nuclear fuel to be disposed under oxidising conditions in volcanic tuff at the Yucca Mountain nuclear waste repository. However, carbonate anions easily replace iodide anions in its interlayer and therefore the selectivity coefficient for the anion exchange is not favorable. Another difficulty arising in the quest of an iodide getter for radioactive waste is the long-term stability of the sequestrant that must survive over geological time scales.

Anion exchange

Layered double hydroxides (LDH) are well known for their anion exchange properties.Шаблон:Citation needed

Medical

Hydrotalcite is also used as an antacid, such as Maalox (magnesium-aluminium oxide).[5]

Wastewater treatment

Treating mining and other wastewater by creating hydrotalcites often produces substantially less sludge than lime. In one test, final sludge reductions reached up to 90 percent. This alters the concentration of magnesium and aluminum and raises the pH of water. As the crystals form, they trap other waste substances including radium, rare earths, anions and transition metals. The resulting mixture can be removed via settling, centrifuge, or other mechanical means.[6]

See also

References

Шаблон:Reflist

  • Douglas, G., Shackleton, M. and Woods, P. (2014). Hydrotalcite formation facilitates effective contaminant and radionuclide removal from acidic uranium mine barren lixiviant. Applied Geochemistry, 42, 27-37.
  • Douglas, G.B. (2014). Contaminant removal from Baal Gammon acidic mine pit water via in situ hydrotalcite formation. Applied Geochemistry, 51, 15-22.

Further reading

Шаблон:Antacids

  1. Шаблон:Cite journal
  2. 2,0 2,1 Ошибка цитирования Неверный тег <ref>; для сносок Mindat не указан текст
  3. 3,0 3,1 Ошибка цитирования Неверный тег <ref>; для сносок Handbook не указан текст
  4. Ошибка цитирования Неверный тег <ref>; для сносок Report не указан текст
  5. Шаблон:Cite web
  6. Шаблон:Cite web