Английская Википедия:Hypograph (mathematics)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Hypograph en.svg
Hypograph of a function

In mathematics, the hypograph or subgraph of a function <math>f:\R^{n}\rightarrow \R</math> is the set of points lying on or below its graph. A related definition is that of such a function's epigraph, which is the set of points on or above the function's graph.

The domain (rather than the codomain) of the function is not particularly important for this definition; it can be an arbitrary set[1] instead of <math>\mathbb{R}^n</math>.

Definition

The definition of the hypograph was inspired by that of the graph of a function, where the Шаблон:Em of <math>f : X \to Y</math> is defined to be the set

<math>\operatorname{graph} f := \left\{ (x, y) \in X \times Y ~:~ y = f(x) \right\}.</math>

The Шаблон:Em or Шаблон:Em of a function <math>f : X \to [-\infty, \infty]</math> valued in the extended real numbers <math>[-\infty, \infty] = \mathbb{R} \cup \{ \pm \infty \}</math> is the setШаблон:Sfn

<math>

\begin{alignat}{4} \operatorname{hyp} f &= \left\{ (x, r) \in X \times \mathbb{R} ~:~ r \leq f(x) \right\} \\ &= \left[ f^{-1}(\infty) \times \mathbb{R} \right] \cup \bigcup_{x \in f^{-1}(\mathbb{R})} (\{ x \} \times (-\infty, f(x)]). \end{alignat} </math>

Similarly, the set of points on or above the function is its epigraph. Шаблон:Anchor The Шаблон:Em is the hypograph with the graph removed:

<math>

\begin{alignat}{4} \operatorname{hyp}_S f &= \left\{ (x, r) \in X \times \mathbb{R} ~:~ r < f(x) \right\} \\ &= \operatorname{hyp} f \setminus \operatorname{graph} f \\ &= \bigcup_{x \in X} (\{ x \} \times (-\infty, f(x))). \end{alignat} </math>

Despite the fact that <math>f</math> might take one (or both) of <math>\pm \infty</math> as a value (in which case its graph would Шаблон:Em be a subset of <math>X \times \mathbb{R}</math>), the hypograph of <math>f</math> is nevertheless defined to be a subset of <math>X \times \mathbb{R}</math> rather than of <math>X \times [-\infty, \infty].</math>

Properties

The hypograph of a function <math>f</math> is empty if and only if <math>f</math> is identically equal to negative infinity.

A function is concave if and only if its hypograph is a convex set. The hypograph of a real affine function <math>g : \mathbb{R}^n \to \mathbb{R}</math> is a halfspace in <math>\mathbb{R}^{n+1}.</math>

A function is upper semicontinuous if and only if its hypograph is closed.

See also

Citations

Шаблон:Commonscat Шаблон:Reflist

References

Шаблон:Convex analysis and variational analysis

Шаблон:Mathanalysis-stub

  1. Ошибка цитирования Неверный тег <ref>; для сносок AliprantisBorder2007 не указан текст