Английская Википедия:Icosagon

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Use dmy dates Шаблон:Regular polygon db In geometry, an icosagon or 20-gon is a twenty-sided polygon. The sum of any icosagon's interior angles is 3240 degrees.

Regular icosagon

The regular icosagon has Schläfli symbol Шаблон:Math, and can also be constructed as a truncated decagon, Шаблон:Math, or a twice-truncated pentagon, Шаблон:Math.

One interior angle in a regular icosagon is 162°, meaning that one exterior angle would be 18°.

The area of a regular icosagon with edge length Шаблон:Math is

<math>A={5}t^2(1+\sqrt{5}+\sqrt{5+2\sqrt{5}}) \simeq 31.5687 t^2.</math>

In terms of the radius Шаблон:Math of its circumcircle, the area is

<math>A=\frac{5R^2}{2}(\sqrt{5}-1);</math>

since the area of the circle is <math>\pi R^2,</math> the regular icosagon fills approximately 98.36% of its circumcircle.

Uses

The Big Wheel on the popular US game show The Price Is Right has an icosagonal cross-section.

The Globe, the outdoor theater used by William Shakespeare's acting company, was discovered to have been built on an icosagonal foundation when a partial excavation was done in 1989.[1]

As a golygonal path, the swastika is considered to be an irregular icosagon.[2]

Файл:4.5.20 vertex.png A regular square, pentagon, and icosagon can completely fill a plane vertex.

Construction

As Шаблон:Math, regular icosagon is constructible using a compass and straightedge, or by an edge-bisection of a regular decagon, or a twice-bisected regular pentagon:

Файл:Regular Icosagon Inscribed in a Circle.gif
Construction of a regular icosagon
Файл:Regular Decagon Inscribed in a Circle.gif
Construction of a regular decagon

The golden ratio in an icosagon

<math>\frac{\overline{ E_{20}E_1}}{\overline{E_1 F}} = \frac{\overline{E_{20} F}}{\overline{ E_{20}E_1}} = \frac{1+ \sqrt{5}}{2} =\varphi \approx 1.618</math>
Файл:01-Zwanzigeck-Seite-gegeben Animation.gif
Icosagon with given side length, animation (The construction is very similar to that of decagon with given side length)

Symmetry

Файл:Symmetries of icosagon.png
Symmetries of a regular icosagon. Vertices are colored by their symmetry positions. Blue mirrors are drawn through vertices, and purple mirrors are drawn through edge. Gyration orders are given in the center.

The regular icosagon has [[dihedral symmetry|Шаблон:Math symmetry]], order 40. There are 5 subgroup dihedral symmetries: Шаблон:Math, and Шаблон:Math, and 6 cyclic group symmetries: Шаблон:Math, and (Шаблон:Math.

These 10 symmetries can be seen in 16 distinct symmetries on the icosagon, a larger number because the lines of reflections can either pass through vertices or edges. John Conway labels these by a letter and group order.[3] Full symmetry of the regular form is Шаблон:Math and no symmetry is labeled Шаблон:Math. The dihedral symmetries are divided depending on whether they pass through vertices (Шаблон:Math for diagonal) or edges (Шаблон:Math for perpendiculars), and Шаблон:Math when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as Шаблон:Math for their central gyration orders.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the Шаблон:Math subgroup has no degrees of freedom but can be seen as directed edges.

The highest symmetry irregular icosagons are Шаблон:Math, an isogonal icosagon constructed by ten mirrors which can alternate long and short edges, and Шаблон:Math, an isotoxal icosagon, constructed with equal edge lengths, but vertices alternating two different internal angles. These two forms are duals of each other and have half the symmetry order of the regular icosagon.

Шаблон:-

Dissection

20-gon with 180 rhombs
Файл:20-gon rhombic dissection-size2.svg
regular
Файл:Isotoxal 20-gon rhombic dissection-size2.svg
Isotoxal

Coxeter states that every zonogon (a Шаблон:Math-gon whose opposite sides are parallel and of equal length) can be dissected into Шаблон:Math parallelograms.[4] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the icosagon, Шаблон:Math, and it can be divided into 45: 5 squares and 4 sets of 10 rhombs. This decomposition is based on a Petrie polygon projection of a 10-cube, with 45 of 11520 faces. The list Шаблон:OEIS2C enumerates the number of solutions as 18,410,581,880, including up to 20-fold rotations and chiral forms in reflection.

Dissection into 45 rhombs
Файл:10-cube.svg
10-cube
Файл:20-gon-dissection.svg Файл:20-gon rhombic dissection3.svg Файл:20-gon rhombic dissection4.svg Файл:20-gon-dissection-random.svg

Related polygons

An icosagram is a 20-sided star polygon, represented by symbol Шаблон:Math. There are three regular forms given by Schläfli symbols: Шаблон:Math, Шаблон:Math, and Шаблон:Math. There are also five regular star figures (compounds) using the same vertex arrangement: Шаблон:Math, Шаблон:Math, Шаблон:Math, Шаблон:Math, Шаблон:Math, and Шаблон:Math.

n 1 2 3 4 5
Form Convex polygon Compound Star polygon Compound
Image Файл:Regular polygon 20.svg
{20/1} = {20}
Файл:Regular star figure 2(10,1).svg
{20/2} = 2{10}
Файл:Regular star polygon 20-3.svg
{20/3}
Файл:Regular star figure 4(5,1).svg
{20/4} = 4{5}
Файл:Regular star figure 5(4,1).svg
{20/5} = 5{4}
Interior angle 162° 144° 126° 108° 90°
n 6 7 8 9 10
Form Compound Star polygon Compound Star polygon Compound
Image Файл:Regular star figure 2(10,3).svg
{20/6} = 2{10/3}
Файл:Regular star polygon 20-7.svg
{20/7}
Файл:Regular star figure 4(5,2).svg
{20/8} = 4{5/2}
Файл:Regular star polygon 20-9.svg
{20/9}
Файл:Regular star figure 10(2,1).svg
{20/10} = 10{2}
Interior angle 72° 54° 36° 18°

Deeper truncations of the regular decagon and decagram can produce isogonal (vertex-transitive) intermediate icosagram forms with equally spaced vertices and two edge lengths.[5]

A regular icosagram, Шаблон:Math, can be seen as a quasitruncated decagon, Шаблон:Math. Similarly a decagram, Шаблон:Math has a quasitruncation Шаблон:Math, and finally a simple truncation of a decagram gives Шаблон:Math.

Icosagrams as truncations of a regular decagons and decagrams, {10}, {10/3}
Quasiregular Quasiregular
Файл:Regular polygon truncation 10 1.svg
t{10}={20}
Файл:Regular polygon truncation 10 2.svg Файл:Regular polygon truncation 10 3.svg Файл:Regular polygon truncation 10 4.svg Файл:Regular polygon truncation 10 5.svg Файл:Regular polygon truncation 10 6.svg
t{10/9}={20/9}
Файл:Regular star truncation 10-3 1.svg
t{10/3}={20/3}
Файл:Regular star truncation 10-3 2.svg Файл:Regular star truncation 10-3 3.svg Файл:Regular star truncation 10-3 4.svg Файл:Regular star truncation 10-3 5.svg Файл:Regular star truncation 10-3 6.svg
t{10/7}={20/7}

Petrie polygons

The regular icosagon is the Petrie polygon for a number of higher-dimensional polytopes, shown in orthogonal projections in Coxeter planes:

A19 B10 D11 E8 H4 ½2H2 2H2
Файл:19-simplex t0.svg
19-simplex
Файл:10-cube t9.svg
10-orthoplex
Файл:10-cube t0.svg
10-cube
Файл:11-demicube.svg
11-demicube
Файл:4 21 t0 p20.svg
(421)
Файл:600-cell t0 p20.svg
600-cell
Файл:Grand antiprism 20-gonal orthogonal projection.png
Grand antiprism
Файл:10-10 duopyramid ortho-3.png
10-10 duopyramid
Файл:10-10 duoprism ortho-3.png
10-10 duoprism

It is also the Petrie polygon for the icosahedral 120-cell, small stellated 120-cell, great icosahedral 120-cell, and great grand 120-cell.

References

Шаблон:Reflist

External links

Шаблон:Polygons

  1. Muriel Pritchett, University of Georgia "To Span the Globe" Шаблон:Webarchive, see also Editor's Note, retrieved on 10 January 2016
  2. Шаблон:MathWorld
  3. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, Шаблон:ISBN (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  4. Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  5. The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum