Английская Википедия:Identity function
Шаблон:Short description Шаблон:Distinguish
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when Шаблон:Mvar is the identity function, the equality Шаблон:Math is true for all values of Шаблон:Mvar to which Шаблон:Mvar can be applied.
Definition
Formally, if Шаблон:Math is a set, the identity function Шаблон:Math on Шаблон:Math is defined to be a function with Шаблон:Math as its domain and codomain, satisfying Шаблон:Bi
In other words, the function value Шаблон:Math in the codomain Шаблон:Math is always the same as the input element Шаблон:Math in the domain Шаблон:Math. The identity function on Шаблон:Mvar is clearly an injective function as well as a surjective function, so it is bijective.[1]
The identity function Шаблон:Math on Шаблон:Math is often denoted by Шаблон:Math.
In set theory, where a function is defined as a particular kind of binary relation, the identity function is given by the identity relation, or diagonal of Шаблон:Math.[2]
Algebraic properties
If Шаблон:Math is any function, then we have Шаблон:Math (where "∘" denotes function composition). In particular, Шаблон:Math is the identity element of the monoid of all functions from Шаблон:Math to Шаблон:Math (under function composition).
Since the identity element of a monoid is unique,[3] one can alternately define the identity function on Шаблон:Math to be this identity element. Such a definition generalizes to the concept of an identity morphism in category theory, where the endomorphisms of Шаблон:Math need not be functions.
Properties
- The identity function is a linear operator when applied to vector spaces.[4]
- In an Шаблон:Mvar-dimensional vector space the identity function is represented by the identity matrix Шаблон:Math, regardless of the basis chosen for the space.[5]
- The identity function on the positive integers is a completely multiplicative function (essentially multiplication by 1), considered in number theory.[6]
- In a metric space the identity function is trivially an isometry. An object without any symmetry has as its symmetry group the trivial group containing only this isometry (symmetry type Шаблон:Math).[7]
- In a topological space, the identity function is always continuous.[8]
- The identity function is idempotent.[9]
See also
References
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite book
- ↑ Шаблон:Citation
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite book
- ↑ Шаблон:Aut, Hyperbolic Geometry, Springer 2005, Шаблон:Isbn
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite book
- Английская Википедия
- Страницы с неработающими файловыми ссылками
- Functions and mappings
- Elementary mathematics
- Basic concepts in set theory
- Types of functions
- 1 (number)
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Английской Википедии