Английская Википедия:Identity function

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Distinguish

Файл:Function-x.svg
Graph of the identity function on the real numbers

In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when Шаблон:Mvar is the identity function, the equality Шаблон:Math is true for all values of Шаблон:Mvar to which Шаблон:Mvar can be applied.

Definition

Formally, if Шаблон:Math is a set, the identity function Шаблон:Math on Шаблон:Math is defined to be a function with Шаблон:Math as its domain and codomain, satisfying Шаблон:Bi

In other words, the function value Шаблон:Math in the codomain Шаблон:Math is always the same as the input element Шаблон:Math in the domain Шаблон:Math. The identity function on Шаблон:Mvar is clearly an injective function as well as a surjective function, so it is bijective.[1]

The identity function Шаблон:Math on Шаблон:Math is often denoted by Шаблон:Math.

In set theory, where a function is defined as a particular kind of binary relation, the identity function is given by the identity relation, or diagonal of Шаблон:Math.[2]

Algebraic properties

If Шаблон:Math is any function, then we have Шаблон:Math (where "∘" denotes function composition). In particular, Шаблон:Math is the identity element of the monoid of all functions from Шаблон:Math to Шаблон:Math (under function composition).

Since the identity element of a monoid is unique,[3] one can alternately define the identity function on Шаблон:Math to be this identity element. Such a definition generalizes to the concept of an identity morphism in category theory, where the endomorphisms of Шаблон:Math need not be functions.

Properties

See also

References

Шаблон:Reflist