Английская Википедия:Infinite dihedral group

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Refimprove

p1m1, (*∞∞) p2, (22∞) p2mg, (2*∞)
Файл:Frieze group m1.png Файл:Frieze group 12.png Файл:Frieze group mg.png
Файл:Frieze example p1m1.png
Файл:Frieze sidle.png
Файл:Frieze example p2.png
Файл:Frieze spinning hop.png
Файл:Frieze example p2mg.png
Файл:Frieze spinning sidle.png
In 2-dimensions three frieze groups p1m1, p2, and p2mg are isomorphic to the Dih group. They all have 2 generators. The first has two parallel reflection lines, the second two 2-fold gyrations, and the last has one mirror and one 2-fold gyration.
Файл:Isogonal apeirogon linear.png
In one dimension, the infinite dihedral group is seen in the symmetry of an apeirogon alternating two edge lengths, containing reflection points at the center of each edge.

In mathematics, the infinite dihedral group Dih is an infinite group with properties analogous to those of the finite dihedral groups.

In two-dimensional geometry, the infinite dihedral group represents the frieze group symmetry, p1m1, seen as an infinite set of parallel reflections along an axis.

Definition

Every dihedral group is generated by a rotation r and a reflection; if the rotation is a rational multiple of a full rotation, then there is some integer n such that rn is the identity, and we have a finite dihedral group of order 2n. If the rotation is not a rational multiple of a full rotation, then there is no such n and the resulting group has infinitely many elements and is called Dih. It has presentations

<math>\langle r, s \mid s^2 = 1, srs = r^{-1} \rangle \,\!</math>
<math>\langle x, y \mid x^2 = y^2 = 1 \rangle \,\!</math>[1]

and is isomorphic to a semidirect product of Z and Z/2, and to the free product Z/2 * Z/2. It is the automorphism group of the graph consisting of a path infinite to both sides. Correspondingly, it is the isometry group of Z (see also symmetry groups in one dimension), the group of permutations αZ → Z satisfying |i − j| = |α(i) − α(j)|, for all i', j in Z.[2]

The infinite dihedral group can also be defined as the holomorph of the infinite cyclic group.

Aliasing

Файл:Aliasing-folding.svg
When periodically sampling a sinusoidal function at rate Шаблон:Math, the abscissa above represents its frequency, and the ordinate represents another sinusoid that could produce the same set of samples. An infinite number of abscissas have the same ordinate (an equivalence class with the fundamental domain Шаблон:Math), and they exhibit dihedral symmetry. The many-to-one phenomenon is known as aliasing.

Шаблон:Details An example of infinite dihedral symmetry is in aliasing of real-valued signals.

When sampling a function at frequency Шаблон:Math (intervals Шаблон:Math), the following functions yield identical sets of samples: Шаблон:Math}. Thus, the detected value of frequency Шаблон:Mvar is periodic, which gives the translation element Шаблон:Math. The functions and their frequencies are said to be aliases of each other. Noting the trigonometric identity:

<math>

\sin(2\pi (f+Nf_s)t + \varphi) = \begin{cases}

+\sin(2\pi (f+Nf_s)t + \varphi),
& f+Nf_s \ge 0, \\[4pt]
-\sin(2\pi |f+Nf_s|t - \varphi),
& f+Nf_s < 0,

\end{cases} </math>

we can write all the alias frequencies as positive values: <math display=inline>|f+Nf_s|</math>. This gives the reflection (Шаблон:Mvar) element, namely Шаблон:Mvar ↦ Шаблон:Mvar.  For example, with Шаблон:Math  and  Шаблон:MathШаблон:Math  reflects to  Шаблон:Math, resulting in the two left-most black dots in the figure.[note 1]  The other two dots correspond to Шаблон:Math  and  Шаблон:Math. As the figure depicts, there are reflection symmetries, at 0.5Шаблон:MathШаблон:Math,  1.5Шаблон:Math,  etc.  Formally, the quotient under aliasing is the orbifold [0, 0.5Шаблон:Math], with a Z/2 action at the endpoints (the orbifold points), corresponding to reflection.

See also

Notes

Шаблон:Reflist

References

  1. Шаблон:Cite journal
  2. Meenaxi Bhattacharjee, Dugald Macpherson, Rögnvaldur G. Möller, Peter M. Neumann. Notes on Infinite Permutation Groups, Issue 1689. Springer, 1998. [[[:Шаблон:Google books]] p. 38]. Шаблон:ISBN


Ошибка цитирования Для существующих тегов <ref> группы «note» не найдено соответствующего тега <references group="note"/>