Английская Википедия:Integer broom topology

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In general topology, a branch of mathematics, the integer broom topology is an example of a topology on the so-called integer broom space X.[1]

Definition of the integer broom space

Файл:Integer Broom Plot FBN.gif
Шаблон:Center

The integer broom space X is a subset of the plane R2. Assume that the plane is parametrised by polar coordinates. The integer broom contains the origin and the points Шаблон:Nowrap such that n is a non-negative integer and Шаблон:Nowrap}, where Z+ is the set of positive integers.[1] The image on the right gives an illustration for Шаблон:Nowrap and Шаблон:Nowrap. Geometrically, the space consists of a collection of convergent sequences. For a fixed n, we have a sequence of points − lying on circle with centre (0, 0) and radius n − that converges to the point (n, 0).

Definition of the integer broom topology

We define the topology on X by means of a product topology. The integer broom space is given by the polar coordinates

<math>(n, \theta) \in \{ n \in \Z : n \ge 0 \} \times \{ \theta = 1/k : k \in \Z^{+} \} \, .</math>

Let us write Шаблон:Nowrap for simplicity. The integer broom topology on X is the product topology induced by giving U the right order topology, and V the subspace topology from R.[1]

Properties

The integer broom space, together with the integer broom topology, is a compact topological space. It is a T0 space, but it is neither a T1 space nor a Hausdorff space. The space is path connected, while neither locally connected nor arc connected.[2]

See also

References

Шаблон:Reflist