Английская Википедия:Involution (mathematics)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:For

Файл:Involution.svg
An involution is a function Шаблон:Math that, when applied twice, brings one back to the starting point.

In mathematics, an involution, involutory function, or self-inverse function[1] is a function Шаблон:Mvar that is its own inverse,

Шаблон:Math

for all Шаблон:Mvar in the domain of Шаблон:Math.[2] Equivalently, applying Шаблон:Mvar twice produces the original value.

General properties

Any involution is a bijection.

The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (Шаблон:Math), reciprocation (Шаблон:Math), and complex conjugation (Шаблон:Math) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher.

The composition Шаблон:Math of two involutions Шаблон:Math and Шаблон:Math is an involution if and only if they commute: Шаблон:Math.[3]

Involutions on finite sets

The number of involutions, including the identity involution, on a set with Шаблон:Math elements is given by a recurrence relation found by Heinrich August Rothe in 1800:

<math>a_0 = a_1 = 1</math> and <math>a_n = a_{n - 1} + (n - 1)a_{n-2}</math> for <math>n > 1.</math>

The first few terms of this sequence are 1, 1, 2, 4, 10, 26, 76, 232 Шаблон:OEIS; these numbers are called the telephone numbers, and they also count the number of Young tableaux with a given number of cells.[4] The number Шаблон:Math can also be expressed by non-recursive formulas, such as the sum <math display="block">a_n = \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n!}{2^m m! (n-2m)!} .</math>

The number of fixed points of an involution on a finite set and its number of elements have the same parity. Thus the number of fixed points of all the involutions on a given finite set have the same parity. In particular, every involution on an odd number of elements has at least one fixed point. This can be used to prove Fermat's two squares theorem.[5]

Involution throughout the fields of mathematics

Real-valued functions

Some basic examples of involutions include the functions <math display=block> \begin{alignat}{4} f_1(x) &= -x, \\ f_2(x) &= \frac{1}{x}, \\ f_3(x) &= \frac{x}{x - 1}, \\ \end{alignat}</math> the composition <math>f_4(x) := (f_1 \circ f_2)(x) = (f_2 \circ f_1)(x) = -\frac {1}{x},</math> and more generally the function <math display=block>g(x) = \frac{b - x}{1 + c x}</math> is an involution for constants Шаблон:Math and Шаблон:Math that satisfy Шаблон:Math.

Another one is <math display=block>f(x) = \ln\left(\frac {e^x+1}{e^x-1}\right).</math>

The graph of an involution (on the real numbers) is symmetric across the line Шаблон:Math. This is due to the fact that the inverse of any general function will be its reflection over the line Шаблон:Math. This can be seen by "swapping" Шаблон:Math with Шаблон:Math. If, in particular, the function is an involution, then its graph is its own reflection.

Other elementary involutions are useful in solving functional equations.

Euclidean geometry

A simple example of an involution of the three-dimensional Euclidean space is reflection through a plane. Performing a reflection twice brings a point back to its original coordinates.

Another involution is reflection through the origin; not a reflection in the above sense, and so, a distinct example.

These transformations are examples of affine involutions.

Projective geometry

An involution is a projectivity of period 2, that is, a projectivity that interchanges pairs of points.[6]Шаблон:Rp

  • Any projectivity that interchanges two points is an involution.
  • The three pairs of opposite sides of a complete quadrangle meet any line (not through a vertex) in three pairs of an involution. This theorem has been called Desargues's Involution Theorem.[7] Its origins can be seen in Lemma IV of the lemmas to the Porisms of Euclid in Volume VII of the Collection of Pappus of Alexandria.[8]
  • If an involution has one fixed point, it has another, and consists of the correspondence between harmonic conjugates with respect to these two points. In this instance the involution is termed "hyperbolic", while if there are no fixed points it is "elliptic". In the context of projectivities, fixed points are called double points.[6]Шаблон:Rp

Another type of involution occurring in projective geometry is a polarity that is a correlation of period 2.[9]

Linear algebra

Шаблон:Details In linear algebra, an involution is a linear operator Шаблон:Math on a vector space, such that Шаблон:Math. Except for in characteristic 2, such operators are diagonalizable for a given basis with just Шаблон:Maths and Шаблон:Maths on the diagonal of the corresponding matrix. If the operator is orthogonal (an orthogonal involution), it is orthonormally diagonalizable.

For example, suppose that a basis for a vector space Шаблон:Math is chosen, and that Шаблон:Math and Шаблон:Math are basis elements. There exists a linear transformation Шаблон:Math that sends Шаблон:Math to Шаблон:Math, and sends Шаблон:Math to Шаблон:Math, and that is the identity on all other basis vectors. It can be checked that Шаблон:Math for all Шаблон:Math in Шаблон:Math. That is, Шаблон:Math is an involution of Шаблон:Math.

For a specific basis, any linear operator can be represented by a matrix Шаблон:Math. Every matrix has a transpose, obtained by swapping rows for columns. This transposition is an involution on the set of matrices. Since elementwise complex conjugation is an independent involution, the conjugate transpose or Hermitian adjoint is also an involution.

The definition of involution extends readily to modules. Given a module Шаблон:Math over a ring Шаблон:Math, an Шаблон:Math endomorphism Шаблон:Math of Шаблон:Math is called an involution if Шаблон:Math is the identity homomorphism on Шаблон:Math.

Involutions are related to idempotents; if Шаблон:Math is invertible then they correspond in a one-to-one manner.

In functional analysis, Banach *-algebras and C*-algebras are special types of Banach algebras with involutions.

Quaternion algebra, groups, semigroups

In a quaternion algebra, an (anti-)involution is defined by the following axioms: if we consider a transformation <math>x \mapsto f(x)</math> then it is an involution if

  • <math> f(f(x))=x </math> (it is its own inverse)
  • <math> f(x_1+x_2)=f(x_1)+f(x_2) </math> and <math> f(\lambda x)=\lambda f(x) </math> (it is linear)
  • <math> f(x_1 x_2)=f(x_1) f(x_2) </math>

An anti-involution does not obey the last axiom but instead

  • <math> f(x_1 x_2)=f(x_2) f(x_1) </math>

This former law is sometimes called antidistributive. It also appears in groups as Шаблон:Math. Taken as an axiom, it leads to the notion of semigroup with involution, of which there are natural examples that are not groups, for example square matrix multiplication (i.e. the full linear monoid) with transpose as the involution.

Ring theory

Шаблон:Details In ring theory, the word involution is customarily taken to mean an antihomomorphism that is its own inverse function. Examples of involutions in common rings:

Group theory

In group theory, an element of a group is an involution if it has order 2; that is, an involution is an element Шаблон:Math such that Шаблон:Math and Шаблон:Math, where Шаблон:Math is the identity element.[10] Originally, this definition agreed with the first definition above, since members of groups were always bijections from a set into itself; that is, group was taken to mean permutation group. By the end of the 19th century, group was defined more broadly, and accordingly so was involution.

A permutation is an involution if and only if it can be written as a finite product of disjoint transpositions.

The involutions of a group have a large impact on the group's structure. The study of involutions was instrumental in the classification of finite simple groups.

An element Шаблон:Math of a group Шаблон:Math is called strongly real if there is an involution Шаблон:Math with Шаблон:Math (where Шаблон:Math).

Coxeter groups are groups generated by a set Шаблон:Math of involutions subject only to relations involving powers of pairs of elements of Шаблон:Math. Coxeter groups can be used, among other things, to describe the possible regular polyhedra and their generalizations to higher dimensions.

Mathematical logic

The operation of complement in Boolean algebras is an involution. Accordingly, negation in classical logic satisfies the law of double negation: Шаблон:Math is equivalent to Шаблон:Math.

Generally in non-classical logics, negation that satisfies the law of double negation is called involutive. In algebraic semantics, such a negation is realized as an involution on the algebra of truth values. Examples of logics that have involutive negation are Kleene and Bochvar three-valued logics, Łukasiewicz many-valued logic, fuzzy logic IMTL, etc. Involutive negation is sometimes added as an additional connective to logics with non-involutive negation; this is usual, for example, in t-norm fuzzy logics.

The involutiveness of negation is an important characterization property for logics and the corresponding varieties of algebras. For instance, involutive negation characterizes Boolean algebras among Heyting algebras. Correspondingly, classical Boolean logic arises by adding the law of double negation to intuitionistic logic. The same relationship holds also between MV-algebras and BL-algebras (and so correspondingly between Łukasiewicz logic and fuzzy logic BL), IMTL and MTL, and other pairs of important varieties of algebras (resp. corresponding logics).

In the study of binary relations, every relation has a converse relation. Since the converse of the converse is the original relation, the conversion operation is an involution on the category of relations. Binary relations are ordered through inclusion. While this ordering is reversed with the complementation involution, it is preserved under conversion.

Computer science

The XOR bitwise operation with a given value for one parameter is an involution on the other parameter. XOR masks in some instances were used to draw graphics on images in such a way that drawing them twice on the background reverts the background to its original state. The NOT bitwise operation is also an involution, and is a special case of the XOR operation where one parameter has all bits set to 1.

Another example is a bit mask-and-shift function operating on colour values stored as integers, say in the form Шаблон:Math, that swaps Шаблон:Math and Шаблон:Math, resulting in the form Шаблон:Math: Шаблон:Math.

The RC4 cryptographic cipher is an involution, as encryption and decryption operations use the same function.

Practically all mechanical cipher machines implement a reciprocal cipher, an involution on each typed-in letter. Instead of designing two kinds of machines, one for encrypting and one for decrypting, all the machines can be identical and can be set up (keyed) the same way.[11]

See also

References

Шаблон:Reflist

Further reading

External links

  1. Robert Alexander Adams, Calculus: Single Variable, 2006, Шаблон:Isbn, p. 165
  2. Шаблон:Citation
  3. Шаблон:Citation.
  4. Шаблон:Citation
  5. Шаблон:Citation.
  6. 6,0 6,1 A.G. Pickford (1909) Elementary Projective Geometry, Cambridge University Press via Internet Archive
  7. J. V. Field and J. J. Gray (1987) The Geometrical Work of Girard Desargues, (New York: Springer), p. 54
  8. Ivor Thomas (editor) (1980) Selections Illustrating the History of Greek Mathematics, Volume II, number 362 in the Loeb Classical Library (Cambridge and London: Harvard and Heinemann), pp. 610–3
  9. H. S. M. Coxeter (1969) Introduction to Geometry, pp. 244–8, John Wiley & Sons
  10. John S. Rose. "A Course on Group Theory". p. 10, section 1.13.
  11. Greg Goebel. "The Mechanization of Ciphers" 2018.