Английская Википедия:Isohedral figure

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Redirect-distinguish Шаблон:For

Файл:Dice Set.jpg
A set of isohedral dice

In geometry, a tessellation of dimension Шаблон:Math (a plane tiling) or higher, or a polytope of dimension Шаблон:Math (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. In other words, for any two faces Шаблон:Mvar and Шаблон:Mvar, there must be a symmetry of the entire figure by translations, rotations, and/or reflections that maps Шаблон:Mvar onto Шаблон:Mvar. For this reason, convex isohedral polyhedra are the shapes that will make fair dice.[1]

Isohedral polyhedra are called isohedra. They can be described by their face configuration. An isohedron has an even number of faces.

The dual of an isohedral polyhedron is vertex-transitive, i.e. isogonal. The Catalan solids, the bipyramids, and the trapezohedra are all isohedral. They are the duals of the (isogonal) Archimedean solids, prisms, and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex-, edge-, and face-transitive (i.e. isogonal, isotoxal, and isohedral).

A form that is isohedral, has regular vertices, and is also edge-transitive (i.e. isotoxal) is said to be a quasiregular dual. Some theorists regard these figures as truly quasiregular because they share the same symmetries, but this is not generally accepted.

A polyhedron which is isohedral and isogonal is said to be noble.

Not all isozonohedra[2] are isohedral.[3] For example, a rhombic icosahedron is an isozonohedron but not an isohedron.[4]

Examples

Convex Concave
Файл:Hexagonale bipiramide.png
Hexagonal bipyramids, V4.4.6, are nonregular isohedral polyhedra.
Файл:Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg
The Cairo pentagonal tiling, V3.3.4.3.4, is isohedral.
Файл:Rhombic dodecahedra.png
The rhombic dodecahedral honeycomb is isohedral (and isochoric, and space-filling).
Файл:Capital I4 tiling-4color.svg
A square tiling distorted into a spiraling H tiling (topologically equivalent) is still isohedral.

Classes of isohedra by symmetry

Faces Face
config.
Class Name Symmetry Order Convex Coplanar Nonconvex
4 V33 Platonic tetrahedron
tetragonal disphenoid
rhombic disphenoid
Td, [3,3], (*332)
D2d, [2+,2], (2*)
D2, [2,2]+, (222)
24
4
4
4
TetrahedronФайл:Disphenoid tetrahedron.pngФайл:Rhombic disphenoid.png
6 V34 Platonic cube
trigonal trapezohedron
asymmetric trigonal trapezohedron
Oh, [4,3], (*432)
D3d, [2+,6]
(2*3)
D3
[2,3]+, (223)
48
12
12
6
CubeФайл:TrigonalTrapezohedron.svgФайл:Trigonal trapezohedron gyro-side.png
8 V43 Platonic octahedron
square bipyramid
rhombic bipyramid
square scalenohedron
Oh, [4,3], (*432)
D4h,[2,4],(*224)
D2h,[2,2],(*222)
D2d,[2+,4],(2*2)
48
16
8
8
OctahedronФайл:Square bipyramid.pngФайл:Rhombic bipyramid.pngФайл:4-scalenohedron-01.pngФайл:4-scalenohedron-025.pngФайл:4-scalenohedron-05.png Файл:4-scalenohedron-15.png
12 V35 Platonic regular dodecahedron
pyritohedron
tetartoid
Ih, [5,3], (*532)
Th, [3+,4], (3*2)
T, [3,3]+, (*332)
120
24
12
DodecahedronФайл:Pyritohedron.pngФайл:Tetartoid.png Файл:Tetartoid cubic.pngФайл:Tetartoid tetrahedral.png Файл:Concave pyritohedral dodecahedron.pngФайл:Star pyritohedron-1.49.png
20 V53 Platonic regular icosahedron Ih, [5,3], (*532) 120 Icosahedron
12 V3.62 Catalan triakis tetrahedron Td, [3,3], (*332) 24 Triakis tetrahedron Файл:Triakis tetrahedron cubic.pngФайл:Triakis tetrahedron tetrahedral.png Файл:5-cell net.png
12 V(3.4)2 Catalan rhombic dodecahedron
deltoidal dodecahedron
Oh, [4,3], (*432)
Td, [3,3], (*332)
48
24
Rhombic dodecahedronФайл:Skew rhombic dodecahedron-116.pngФайл:Skew rhombic dodecahedron-150.png Файл:Skew rhombic dodecahedron-200.png Файл:Skew rhombic dodecahedron-250.pngФайл:Skew rhombic dodecahedron-450.png
24 V3.82 Catalan triakis octahedron Oh, [4,3], (*432) 48 Triakis octahedron Файл:Stella octangula.svgФайл:Excavated octahedron.png
24 V4.62 Catalan tetrakis hexahedron Oh, [4,3], (*432) 48 Tetrakis hexahedronФайл:Pyramid augmented cube.png Файл:Tetrakis hexahedron cubic.pngФайл:Tetrakis hexahedron tetrahedral.png Файл:Tetrahemihexacron.pngФайл:Excavated cube.png
24 V3.43 Catalan deltoidal icositetrahedron Oh, [4,3], (*432) 48 Deltoidal icositetrahedronФайл:Deltoidal icositetrahedron gyro.png Файл:Partial cubic honeycomb.pngФайл:Deltoidal icositetrahedron octahedral.pngФайл:Deltoidal icositetrahedron octahedral gyro.png Файл:Deltoidal icositetrahedron concave-gyro.png
48 V4.6.8 Catalan disdyakis dodecahedron Oh, [4,3], (*432) 48 Disdyakis dodecahedron Файл:Disdyakis dodecahedron cubic.pngФайл:Disdyakis dodecahedron octahedral.pngФайл:Rhombic dodeca.png Файл:Hexahemioctacron.pngФайл:DU20 great disdyakisdodecahedron.png
24 V34.4 Catalan pentagonal icositetrahedron O, [4,3]+, (432) 24 Pentagonal icositetrahedron
30 V(3.5)2 Catalan rhombic triacontahedron Ih, [5,3], (*532) 120 Rhombic triacontahedron
60 V3.102 Catalan triakis icosahedron Ih, [5,3], (*532) 120 Triakis icosahedron Файл:Tetrahedra augmented icosahedron.pngФайл:First stellation of icosahedron.pngФайл:Great dodecahedron.pngФайл:Pyramid excavated icosahedron.png
60 V5.62 Catalan pentakis dodecahedron Ih, [5,3], (*532) 120 Pentakis dodecahedron Файл:Pyramid augmented dodecahedron.pngФайл:Small stellated dodecahedron.pngФайл:Great stellated dodecahedron.pngФайл:DU58 great pentakisdodecahedron.pngФайл:Third stellation of icosahedron.svg
60 V3.4.5.4 Catalan deltoidal hexecontahedron Ih, [5,3], (*532) 120 Deltoidal hexecontahedron Файл:Deltoidal hexecontahedron on icosahedron dodecahedron.png Файл:Rhombic hexecontahedron.png
120 V4.6.10 Catalan disdyakis triacontahedron Ih, [5,3], (*532) 120 Disdyakis triacontahedron Файл:Disdyakis triacontahedron dodecahedral.pngФайл:Disdyakis triacontahedron icosahedral.pngФайл:Disdyakis triacontahedron rhombic triacontahedral.png Файл:Small dodecahemidodecacron.pngФайл:Compound of five octahedra.pngФайл:Excavated rhombic triacontahedron.png
60 V34.5 Catalan pentagonal hexecontahedron I, [5,3]+, (532) 60 Pentagonal hexecontahedron
2n V33.n Polar trapezohedron
asymmetric trapezohedron
Dnd, [2+,2n], (2*n)
Dn, [2,n]+, (22n)
4n
2n
Файл:TrigonalTrapezohedron.svgФайл:Tetragonal trapezohedron.pngФайл:Pentagonal trapezohedron.pngФайл:Hexagonal trapezohedron.png
Файл:Trigonal trapezohedron gyro-side.pngФайл:Twisted hexagonal trapezohedron.png
2n
4n
V42.n
V42.2n
V42.2n
Polar regular n-bipyramid
isotoxal 2n-bipyramid
2n-scalenohedron
Dnh, [2,n], (*22n)
Dnh, [2,n], (*22n)
Dnd, [2+,2n], (2*n)
4n Файл:Triangular bipyramid.pngФайл:Square bipyramid.pngФайл:Pentagonal bipyramid.pngФайл:Hexagonale bipiramide.png Файл:Pentagram Dipyramid.pngФайл:7-2 dipyramid.pngФайл:7-3 dipyramid.pngФайл:8-3 dipyramid.pngФайл:8-3-bipyramid zigzag.pngФайл:8-3-bipyramid-inout.pngФайл:8-3-dipyramid zigzag inout.png

k-isohedralШаблон:Anchor figure

A polyhedron (or polytope in general) is k-isohedral if it contains k faces within its symmetry fundamental domains.[5] Similarly, a k-isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k, or only for some m < k).[6] ("1-isohedral" is the same as "isohedral".)

A monohedral polyhedron or monohedral tiling (m = 1) has congruent faces, either directly or reflectively, which occur in one or more symmetry positions. An m-hedral polyhedron or tiling has m different face shapes ("dihedral", "trihedral"... are the same as "2-hedral", "3-hedral"... respectively).[7]

Here are some examples of k-isohedral polyhedra and tilings, with their faces colored by their k symmetry positions:

3-isohedral 4-isohedral isohedral 2-isohedral
2-hedral regular-faced polyhedra Monohedral polyhedra
Файл:Small rhombicuboctahedron.png Файл:Johnson solid 37.png Файл:Deltoidal icositetrahedron gyro.png Файл:Pseudo-strombic icositetrahedron (2-isohedral).png
The rhombicuboctahedron has 1 triangle type and 2 square types. The pseudo-rhombicuboctahedron has 1 triangle type and 3 square types. The deltoidal icositetrahedron has 1 face type. The pseudo-deltoidal icositetrahedron has 2 face types, with same shape.
2-isohedral 4-isohedral Isohedral 3-isohedral
2-hedral regular-faced tilings Monohedral tilings
Файл:Distorted truncated square tiling.png Файл:3-uniform n57.png Файл:Herringbone bond.svg
Файл:P5-type10.png
The Pythagorean tiling has 2 square types (sizes). This 3-uniform tiling has 3 triangle types, with same shape, and 1 square type. The herringbone pattern has 1 rectangle type. This pentagonal tiling has 3 irregular pentagon types, with same shape.

Related terms

A cell-transitive or isochoric figure is an n-polytope (n ≥ 4) or n-honeycomb (n ≥ 3) that has its cells congruent and transitive with each others. In 3 dimensions, the catoptric honeycombs, duals to the uniform honeycombs, are isochoric. In 4 dimensions, isochoric polytopes have been enumerated up to 20 cells.[8]

A facet-transitive or isotopic figure is an n-dimensional polytope or honeycomb with its facets ((n−1)-faces) congruent and transitive. The dual of an isotope is an isogonal polytope. By definition, this isotopic property is common to the duals of the uniform polytopes.

  • An isotopic 2-dimensional figure is isotoxal, i.e. edge-transitive.
  • An isotopic 3-dimensional figure is isohedral, i.e. face-transitive.
  • An isotopic 4-dimensional figure is isochoric, i.e. cell-transitive.

See also

References

Шаблон:Reflist

External links

Шаблон:Tessellation