Английская Википедия:Isotopes of nickel
Шаблон:Short description Шаблон:Use dmy dates Шаблон:Infobox nickel isotopes Naturally occurring nickel (28Ni) is composed of five stable isotopes; Шаблон:SimpleNuclide, Шаблон:SimpleNuclide, Шаблон:SimpleNuclide, Шаблон:SimpleNuclide and Шаблон:SimpleNuclide, with Шаблон:SimpleNuclide being the most abundant (68.077% natural abundance).[1] 26 radioisotopes have been characterised with the most stable being Шаблон:SimpleNuclide with a half-life of 76,000 years, Шаблон:SimpleNuclide with a half-life of 100.1 years, and Шаблон:SimpleNuclide with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 8 meta states.
List of isotopes
Шаблон:Isotopes table
|-
|rowspan=2| Шаблон:SimpleNuclide
|rowspan=2 style="text-align:right" | 28
|rowspan=2 style="text-align:right" | 20
|rowspan=2| 48.01975(54)#
|rowspan=2| 2.8(8) ms
|2p (70%)
|46Fe
|rowspan=2| 0+
|rowspan=2|
|rowspan=2|
|-
|β+ (30%)
|48Co
|-
|rowspan=2| Шаблон:SimpleNuclide
|rowspan=2 style="text-align:right" | 28
|rowspan=2 style="text-align:right" | 21
|rowspan=2| 49.00966(43)#
|rowspan=2| 13(4) ms
[12(+5−3) ms]
|β+, p (83.4%)
|48Fe
|rowspan=2| 7/2−#
|rowspan=2|
|rowspan=2|
|-
|β+ (16.6%)
|49Co
|-
|rowspan=3| Шаблон:SimpleNuclide
|rowspan=3 style="text-align:right" | 28
|rowspan=3 style="text-align:right" | 22
|rowspan=3| 49.99593(28)#
|rowspan=3| 18.5(12) ms
| β+, p (73%)
| 49Fe
|rowspan=3| 0+
|rowspan=3|
|rowspan=3|
|-
|β+, 2p (14%)
|48Mn
|-
|β+ (13%)
|50Co
|-
|rowspan=3| Шаблон:SimpleNuclide
|rowspan=3 style="text-align:right" | 28
|rowspan=3 style="text-align:right" | 23
|rowspan=3| 50.98772(28)#
|rowspan=3| 23.8(2) ms
| β+, p (87.2%)
| 50Fe
|rowspan=3| 7/2−#
|rowspan=3|
|rowspan=3|
|-
|β+ (12.3%)
|51Co
|-
|β+, 2p (0.5%)
|49Mn
|-
| rowspan=2|Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 24
| rowspan=2|51.97568(9)#
| rowspan=2|38(5) ms
| β+ (83%)
| 52Co
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β+, p (17%)
| 51Fe
|-
| rowspan=2|Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 25
| rowspan=2|52.96847(17)#
| rowspan=2|45(15) ms
| β+ (55%)
| 53Co
| rowspan=2|(7/2−)#
| rowspan=2|
| rowspan=2|
|-
| β+, p (45%)
| 52Fe
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 26
| 53.95791(5)
| 104(7) ms
| β+
| 54Co
| 0+
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 27
| 54.951330(12)
| 204.7(17) ms
| β+
| 55Co
| 7/2−
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 28
| 55.942132(12)
| 6.075(10) d
| β+
| Шаблон:SimpleNuclide
| 0+
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 29
| 56.9397935(19)
| 35.60(6) h
| β+
| Шаблон:SimpleNuclide
| 3/2−
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 30
| 57.9353429(7)
| colspan=3 align=center|Observationally stable[n 1]
| 0+
| 0.680769(89)
|
|-
| rowspan=2 | Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 31
| rowspan=2 | 58.9343467(7)
| rowspan=2 | 7.6(5)×104 y
| EC (99%)
| rowspan=2 | Шаблон:SimpleNuclide
| rowspan=2 | 3/2−
| rowspan=2 |
| rowspan=2 |
|-
| β+ (1.5Шаблон:E%)[2]
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 32
| 59.9307864(7)
| colspan=3 align=center|Stable
| 0+
| 0.262231(77)
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 33
| 60.9310560(7)
| colspan=3 align=center|Stable
| 3/2−
| 0.011399(6)
|
|-
| Шаблон:SimpleNuclide[n 2]
| style="text-align:right" | 28
| style="text-align:right" | 34
| 61.9283451(6)
| colspan=3 align=center|Stable
| 0+
| 0.036345(17)
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 35
| 62.9296694(6)
| 100.1(20) y
| β−
| Шаблон:SimpleNuclide
| 1/2−
|
|
|-
| style="text-indent:1em" | Шаблон:SimpleNuclide
| colspan="3" style="text-indent:2em" | 87.15(11) keV
| 1.67(3) μs
|
|
| 5/2−
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 36
| 63.9279660(7)
| colspan=3 align=center|Stable
| 0+
| 0.009256(9)
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 37
| 64.9300843(7)
| 2.5172(3) h
| β−
| Шаблон:SimpleNuclide
| 5/2−
|
|
|-
| style="text-indent:1em" | Шаблон:SimpleNuclide
| colspan="3" style="text-indent:2em" | 63.37(5) keV
| 69(3) μs
|
|
| 1/2−
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 38
| 65.9291393(15)
| 54.6(3) h
| β−
| Шаблон:SimpleNuclide
| 0+
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 39
| 66.931569(3)
| 21(1) s
| β−
| Шаблон:SimpleNuclide
| 1/2−
|
|
|-
| rowspan=2 style="text-indent:1em" | Шаблон:SimpleNuclide
| rowspan=2 colspan="3" style="text-indent:2em" | 1007(3) keV
| rowspan=2|13.3(2) μs
| β−
| Шаблон:SimpleNuclide
| rowspan=2|9/2+
| rowspan=2|
| rowspan=2|
|-
| IT
| 67Ni
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 40
| 67.931869(3)
| 29(2) s
| β−
| Шаблон:SimpleNuclide
| 0+
|
|
|-
| style="text-indent:1em" | Шаблон:SimpleNuclide
| colspan="3" style="text-indent:2em" | 1770.0(10) keV
| 276(65) ns
|
|
| 0+
|
|
|-
| style="text-indent:1em" | Шаблон:SimpleNuclide
| colspan="3" style="text-indent:2em" | 2849.1(3) keV
| 860(50) μs
|
|
| 5−
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 41
| 68.935610(4)
| 11.5(3) s
| β−
| Шаблон:SimpleNuclide
| 9/2+
|
|
|-
| rowspan=2 style="text-indent:1em" | Шаблон:SimpleNuclide
| rowspan=2 colspan="3" style="text-indent:2em" | 321(2) keV
| rowspan=2|3.5(4) s
| β−
| Шаблон:SimpleNuclide
| rowspan=2|(1/2−)
| rowspan=2|
| rowspan=2|
|-
| IT
| 69Ni
|-
| style="text-indent:1em" | Шаблон:SimpleNuclide
| colspan="3" style="text-indent:2em" | 2701(10) keV
| 439(3) ns
|
|
| (17/2−)
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 42
| 69.93650(37)
| 6.0(3) s
| β−
| Шаблон:SimpleNuclide
| 0+
|
|
|-
| style="text-indent:1em" | Шаблон:SimpleNuclide
| colspan="3" style="text-indent:2em" | 2860(2) keV
| 232(1) ns
|
|
| 8+
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 43
| 70.94074(40)
| 2.56(3) s
| β−
| Шаблон:SimpleNuclide
| 1/2−#
|
|
|-
| rowspan=2|Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 44
| rowspan=2|71.94209(47)
| rowspan=2|1.57(5) s
| β− (>99.9%)
| Шаблон:SimpleNuclide
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (<.1%)
| Шаблон:SimpleNuclide
|-
| rowspan=2|Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 45
| rowspan=2|72.94647(32)#
| rowspan=2|0.84(3) s
| β− (>99.9%)
| Шаблон:SimpleNuclide
| rowspan=2|(9/2+)
| rowspan=2|
| rowspan=2|
|-
| β−, n (<.1%)
| Шаблон:SimpleNuclide
|-
| rowspan=2|Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 46
| rowspan=2|73.94807(43)#
| rowspan=2|0.68(18) s
| β− (>99.9%)
| Шаблон:SimpleNuclide
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (<.1%)
| Шаблон:SimpleNuclide
|-
| rowspan=2|Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 47
| rowspan=2|74.95287(43)#
| rowspan=2|0.6(2) s
| β− (98.4%)
| Шаблон:SimpleNuclide
| rowspan=2|(7/2+)#
| rowspan=2|
| rowspan=2|
|-
| β−, n (1.6%)
| Шаблон:SimpleNuclide
|-
| rowspan=2|Шаблон:SimpleNuclide
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 48
| rowspan=2|75.95533(97)#
| rowspan=2|470(390) ms
[0.24(+55−24) s]
| β− (>99.9%)
| Шаблон:SimpleNuclide
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (<.1%)
| Шаблон:SimpleNuclide
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 49
| 76.96055(54)#
| 300# ms
[>300 ns]
| β−
| Шаблон:SimpleNuclide
| 9/2+#
|
|
|-
| Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 50
| 77.96318(118)#
| 120# ms
[>300 ns]
| β−
| Шаблон:SimpleNuclide
| 0+
|
|
|-
|Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 51
| 78.970400(640)#
| 43.0 ms +86−75
| β−
|Шаблон:SimpleNuclide
|
|
|
|-
|Шаблон:SimpleNuclide
| style="text-align:right" | 28
| style="text-align:right" | 52
| 78.970400(640)#
| 24 ms +26−17
| β−
|Шаблон:SimpleNuclide
|
|
|
Шаблон:Isotopes table/footer
Notable isotopes
Шаблон:More citations needed section Шаблон:Original research The 5 stable and 30 unstable isotopes of nickel range in atomic weight from Шаблон:SimpleNuclide to Шаблон:SimpleNuclide, and include:[3]
Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons Шаблон:SimpleNuclide is "doubly magic" (like Шаблон:SimpleNuclide) and therefore much more stable (with a lower limit of its half-life-time of .5 μs) than would be expected from its position in the chart of nuclides.[4] It has the highest ratio of protons to neutrons (proton excess) of any known doubly magic nuclide.[5]
Nickel-56 is produced in large quantities in supernovas and the shape of the light curve of these supernovas display characteristic timescales corresponding to the decay of nickel-56 to cobalt-56 and then to iron-56.
Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture from copper-58 and EC + p from zinc-59.
Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. Шаблон:SimpleNuclide has found many applications in isotope geology. Шаблон:SimpleNuclide has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.
Nickel-60 is the daughter product of the extinct radionuclide Шаблон:SimpleNuclide (half-life = 2.6 My). Because Шаблон:SimpleNuclide had such a long half-life, its persistence in materials in the Solar System at high enough concentrations may have generated observable variations in the isotopic composition of Шаблон:SimpleNuclide. Therefore, the abundance of Шаблон:SimpleNuclide present in extraterrestrial material may provide insight into the origin of the Solar System and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early Solar System. Therefore, so far, no actual age information has been attained from Шаблон:SimpleNuclide excesses. Шаблон:SimpleNuclide is also the stable end-product of the decay of Шаблон:SimpleNuclide, the product of the final rung of the alpha ladder. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.
Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.[6]
Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, although fusion can form heavier isotopes. For instance, two [[isotopes of calcium|Шаблон:SimpleNuclide]] atoms can fuse to form [[isotopes of krypton|Шаблон:SimpleNuclide]] plus 4 positrons (plus 4 neutrinos), liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.
Nickel-63 has two main uses: Detection of explosives traces, and in certain kinds of electronic devices, such as gas discharge tubes used as surge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used in Electron capture detector in gas chromatography for the detection mainly of halogens. It is proposed to be used for miniature betavoltaic generators for pacemakers.
Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64.
Nickel-78 is one of the element's heaviest known isotopes. With 28 protons and 50 neutrons, nickel-78 is doubly magic, resulting in much greater nuclear binding energy and stability despite having a lopsided neutron-proton ratio. It has a half-life of 122 ± 5.1 milliseconds.[7] As a consequence of its magic neutron number, nickel-78 is believed to have an important involvement in supernova nucleosynthesis of elements heavier than iron.[8] 78Ni, along with N = 50 isotones 79Cu and 80Zn, are thought to constitute a waiting point in the r-process, where further neutron capture is delayed by the shell gap and a buildup of isotopes around A = 80 results.[9]
References
- Isotope masses from:
- Isotopic compositions and standard atomic masses from:
- Half-life, spin, and isomer data selected from the following sources.
Шаблон:Navbox element isotopes
Ошибка цитирования Для существующих тегов <ref>
группы «n» не найдено соответствующего тега <references group="n"/>