Английская Википедия:Isotopes of roentgenium

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Infobox roentgenium isotopes Roentgenium (111Rg) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 272Rg in 1994, which is also the only directly synthesized isotope; all others are decay products of heavier elements. There are seven known radioisotopes, having mass numbers of 272, 274, and 278–282. The longest-lived isotope is 282Rg with a half-life of about 2 minutes, although the unconfirmed 283Rg and 286Rg may have longer half-lives of about 5.1 minutes and 10.7 minutes respectively.

List of isotopes

Шаблон:Isotopes table |- | 272Rg | 111 | 161 | 272.15327(25)# | Шаблон:Val | α | 268Mt | 5+#, 6+# |- | 274Rg[n 1] | 111 | 163 | 274.15525(19)# | Шаблон:Val | α | 270Mt | |- | 278Rg[n 2] | 111 | 167 | 278.16149(38)# | Шаблон:Val[1] | α | 274Mt | |- | rowspan=2|279Rg[n 3] | rowspan=2|111 | rowspan=2|168 | rowspan=2|279.16272(51)# | rowspan=2|Шаблон:Val[1] | α (87%) | 275Mt | |- | SF (13%)[1] | (various) |- | rowspan=2|280Rg[n 4] | rowspan=2|111 | rowspan=2|169 | rowspan=2|280.16514(61)# | rowspan=2|Шаблон:Val[1] | α (87%) | 276Mt | |- | EC (13%)[2] | 280Ds | |- |rowspan=2 |281Rg[n 5] |rowspan=2 |111 |rowspan=2 |170 |rowspan=2 |281.16636(89)# |rowspan=2 |Шаблон:Val[1] | SF (86%) | (various) |rowspan=2| |- | α (14%)[1] | 277Mt[3] |- | 282Rg[n 6] | 111 | 171 | 282.16912(72)# | Шаблон:Val | α | 278Mt | |- | 283Rg[n 7] | 111 | 172 | 283.17054(79)# | 5.1 min? | SF | (various) | |- | 286Rg[n 8] | 111 | 175 | | 10.7 min? | α | 282Mt | Шаблон:Isotopes table/footer

Isotopes and nuclear properties

Nucleosynthesis

Super-heavy elements such as roentgenium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas the lightest isotope of roentgenium, roentgenium-272, can be synthesized directly this way, all the heavier roentgenium isotopes have only been observed as decay products of elements with higher atomic numbers.[4]

Depending on the energies involved, fusion reactions can be categorized as "hot" or "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[5] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[4] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).[6]

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=111.

Target Projectile CN Attempt result
205Tl 70Zn 275Rg Шаблон:No
208Pb 65Cu 273Rg Шаблон:Yes
209Bi 64Ni 273Rg Шаблон:Yes
231Pa 48Ca 279Rg Шаблон:Unk
238U 41K 279Rg Шаблон:Unk
244Pu 37Cl 281Rg Шаблон:Unk
248Cm 31P 279Rg Шаблон:Unk
250Cm 31P 281Rg Шаблон:Unk

Cold fusion

Before the first successful synthesis of roentgenium in 1994 by the GSI team, a team at the Joint Institute for Nuclear Research in Dubna, Russia, also tried to synthesize roentgenium by bombarding bismuth-209 with nickel-64 in 1986. No roentgenium atoms were identified. After an upgrade of their facilities, the team at GSI successfully detected 3 atoms of 272Rg in their discovery experiment.[7] A further 3 atoms were synthesized in 2002.[8] The discovery of roentgenium was confirmed in 2003 when a team at RIKEN measured the decays of 14 atoms of 272Rg.[9]

The same roentgenium isotope was also observed by an American team at the Lawrence Berkeley National Laboratory (LBNL) from the reaction:

Шаблон:Nuclide + Шаблон:NuclideШаблон:Nuclide + Шаблон:SubatomicParticle

This reaction was conducted as part of their study of projectiles with odd atomic number in cold fusion reactions.[10]

The 205Tl(70Zn,n)274Rg reaction was tried by the RIKEN team in 2004 and repeated in 2010 in an attempt to secure the discovery of its parent 278Nh:[11]

Шаблон:Nuclide + Шаблон:NuclideШаблон:Nuclide + Шаблон:SubatomicParticle

Due to the weakness of the thallium target, they were unable to detect any atoms of 274Rg.[11]

As decay product

List of roentgenium isotopes observed by decay
Evaporation residue Observed roentgenium isotope
294Lv, 290Fl, 290Nh ? 286Rg ?[12]
287Fl, 287Nh ? 283Rg ?[13]
294Ts, 290Mc, 286Nh 282Rg[14]
293Ts, 289Mc, 285Nh 281Rg[14]
288Mc, 284Nh 280Rg[15]
287Mc, 283Nh 279Rg[15]
286Mc, 282Nh 278Rg[15]
278Nh 274Rg[16]

All the isotopes of roentgenium except roentgenium-272 have been detected only in the decay chains of elements with a higher atomic number, such as nihonium. Nihonium currently has seven known isotopes; all of them undergo alpha decays to become roentgenium nuclei, with mass numbers between 274 and 286. Parent nihonium nuclei can be themselves decay products of moscovium and tennessine, and (via unconfirmed branches) flerovium and livermorium.[17] For example, in January 2010, the Dubna team (JINR) identified roentgenium-281 as a final product in the decay of tennessine via an alpha decay sequence:[14]

Шаблон:NuclideШаблон:Nuclide + Шаблон:Nuclide
Шаблон:NuclideШаблон:Nuclide + Шаблон:Nuclide
Шаблон:NuclideШаблон:Nuclide + Шаблон:Nuclide

Nuclear isomerism

274Rg

Two atoms of 274Rg have been observed in the decay chain of 278Nh. They decay by alpha emission, emitting alpha particles with different energies, and have different lifetimes. In addition, the two entire decay chains appear to be different. This suggests the presence of two nuclear isomers but further research is required.[16]

272Rg

Four alpha particles emitted from 272Rg with energies of 11.37, 11.03, 10.82, and 10.40 MeV have been detected. The GSI measured 272Rg to have a half-life of 1.6 ms while recent data from RIKEN have given a half-life of 3.8 ms. The conflicting data may be due to nuclear isomers but the current data are insufficient to come to any firm assignments.[7][9]

Chemical yields of isotopes

Cold fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing roentgenium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
64Ni 209Bi 273Rg 3.5 pb, 12.5 MeV
65Cu 208Pb 273Rg 1.7 pb, 13.2 MeV

Theoretical calculations

Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
238U 41K 279Rg 4n (275Rg) 0.21 pb DNS [18]
244Pu 37Cl 281Rg 4n (277Rg) 0.33 pb DNS [18]
248Cm 31P 279Rg 4n (275Rg) 1.85 pb DNS [18]
250Cm 31P 281Rg 4n (277Rg) 0.41 pb DNS [18]

References

Шаблон:Reflist

Шаблон:Navbox element isotopes


Ошибка цитирования Для существующих тегов <ref> группы «n» не найдено соответствующего тега <references group="n"/>

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. Ошибка цитирования Неверный тег <ref>; для сносок 2012E117 не указан текст
  4. 4,0 4,1 Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. 7,0 7,1 Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. 9,0 9,1 Шаблон:Cite journal
  10. Шаблон:Cite journal
  11. 11,0 11,1 Шаблон:Cite web
  12. Ошибка цитирования Неверный тег <ref>; для сносок Hofmann2016-Review не указан текст
  13. Ошибка цитирования Неверный тег <ref>; для сносок Hofmann2016-EXON-Remarks не указан текст
  14. 14,0 14,1 14,2 Шаблон:Cite journal
  15. 15,0 15,1 15,2 Шаблон:Cite book
  16. 16,0 16,1 Шаблон:Cite journal
  17. Шаблон:Cite web
  18. 18,0 18,1 18,2 18,3 Шаблон:Cite journal