Английская Википедия:Isotopes of silicon
Шаблон:Short description Шаблон:Infobox silicon isotopes Silicon (14Si) has 23 known isotopes, with mass numbers ranging from 22 to 44. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to 32P (which has a 14.27-day half-life)[1] and then to 32S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.
List of isotopes
Шаблон:Isotopes table |- | rowspan=3|22Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 8 | rowspan=3|22.03611(54)# | rowspan=3|28.7(11) ms | β+, p (62%) | 21Mg | rowspan=3|0+ | rowspan=3| | rowspan=3| |- | β+ (37%) | 22Al |- | β+, 2p (0.7%) | 20Na |- | rowspan=3|23Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 9 | rowspan=3|23.02571(54)# | rowspan=3|42.3(4) ms | β+, p (88%) | 22Mg | rowspan=3|3/2+# | rowspan=3| | rowspan=3| |- | β+ (8%) | 23Al |- | β+, 2p (3.6%) | 21Na |- | rowspan=2|24Si | rowspan=2 style="text-align:right" | 14 | rowspan=2 style="text-align:right" | 10 | rowspan=2|24.011535(21) | rowspan=2|143.2 (21) ms | β+ (65.5%) | 24Al | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β+, p (34.5%) | 23Mg |- | rowspan=2|25Si | rowspan=2 style="text-align:right" | 14 | rowspan=2 style="text-align:right" | 11 | rowspan=2|25.004109(11) | rowspan=2|220.6(10) ms | β+ (65%) | 25Al | rowspan=2|5/2+ | rowspan=2| | rowspan=2| |- | β+, p (35%) | 24Mg |- | 26Si | style="text-align:right" | 14 | style="text-align:right" | 12 | 25.99233382(12) | 2.2453(7) s | β+ | 26Al | 0+ | | |- | 27Si | style="text-align:right" | 14 | style="text-align:right" | 13 | 26.98670469(12) | 4.117(14) s | β+ | 27Al | 5/2+ | | |- | 28Si | style="text-align:right" | 14 | style="text-align:right" | 14 | 27.97692653442(55) | colspan=3 align=center|Stable | 0+ | 0.92223(19) | 0.92205–0.92241 |- | 29Si | style="text-align:right" | 14 | style="text-align:right" | 15 | 28.97649466434(60) | colspan=3 align=center|Stable | 1/2+ | 0.04685(8) | 0.04678–0.04692 |- | 30Si | style="text-align:right" | 14 | style="text-align:right" | 16 | 29.973770137(23) | colspan=3 align=center|Stable | 0+ | 0.03092(11) | 0.03082–0.03102 |- | 31Si | style="text-align:right" | 14 | style="text-align:right" | 17 | 30.975363196(46) | 157.16(20) min | β− | 31P | 3/2+ | | |- | 32Si | style="text-align:right" | 14 | style="text-align:right" | 18 | 31.97415154(32) | 157(7) y | β− | 32P | 0+ | trace | cosmogenic |- | 33Si | style="text-align:right" | 14 | style="text-align:right" | 19 | 32.97797696(75) | 6.18(18) s | β− | 33P | 3/2+ | | |- | 34Si | style="text-align:right" | 14 | style="text-align:right" | 20 | 33.97853805(86) | 2.77(20) s | β− | 34P | 0+ | | |- | style="text-indent:1em" |34mSi | colspan=3 style="text-indent:2em" | 4256.1(4) keV | <210 ns | IT | 34Si | (3−) | | |- | rowspan=2|35Si | rowspan=2 style="text-align:right" | 14 | rowspan=2 style="text-align:right" | 21 | rowspan=2|34.984550(38) | rowspan=2|780(120) ms | β− | 35P | rowspan=2|7/2−# | rowspan=2| | rowspan=2| |- | β−, n? | 34P |- | rowspan=2|36Si | rowspan=2 style="text-align:right" | 14 | rowspan=2 style="text-align:right" | 22 | rowspan=2|35.986649(77) | rowspan=2|503(2) ms | β− (88%) | 36P | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β−, n (12%) | 35P |- | rowspan=3|37Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 23 | rowspan=3|36.99295(12) | rowspan=3|141.0(35) ms | β− (83%) | 37P | rowspan=3|(5/2−) | rowspan=3| | rowspan=3| |- | β−, n (17%) | 36P |- | β−, 2n? | 35P |- | rowspan=2|38Si | rowspan=2 style="text-align:right" | 14 | rowspan=2 style="text-align:right" | 24 | rowspan=2|37.99552(11) | rowspan=2|63(8) ms | β− (75%) | 38P | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β−, n (25%) | 37P |- | rowspan=3|39Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 25 | rowspan=3|39.00249(15) | rowspan=3|41.2(41) ms | β− (67%) | 39P | rowspan=3|(5/2−) | rowspan=3| | rowspan=3| |- | β−, n (33%) | 38P |- | β−, 2n? | 37P |- | rowspan=3|40Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 26 | rowspan=3|40.00608(13) | rowspan=3|31.2(26) ms | β− (62%) | 40P | rowspan=3|0+ | rowspan=3| | rowspan=3| |- | β−, n (38%) | 39P |- | β−, 2n? | 38P |- | rowspan=3|41Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 27 | rowspan=3|41.01417(32)# | rowspan=3|20.0(25) ms | β−, n (>55%) | 40P | rowspan=3|7/2−# | rowspan=3| | rowspan=3| |- | β− (<45%) | 41P |- | β−, 2n? | 39P |- | rowspan=3|42Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 28 | rowspan=3|42.01808(32)# | rowspan=3|15.5(4 (stat), 16 (sys)) ms[2] | β− (51%) | 42P | rowspan=3|0+ | rowspan=3| | rowspan=3| |- | β−, n (48%) | 41P |- | β−, 2n (1%) | 40P |- | rowspan=3|43Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 29 | rowspan=3|43.02612(43)# | rowspan=3|13(4 (stat), 2 (sys)) ms[2] | β−, n (52%) | 42P | rowspan=3|3/2−# | rowspan=3| | rowspan=3| |- | β− (27%) | 43P |- | β−, 2n (21%) | 41P |- | rowspan=3|44Si | rowspan=3 style="text-align:right" | 14 | rowspan=3 style="text-align:right" | 30 | rowspan=3|44.03147(54)# | rowspan=3|4# ms [>360 ns] | β−? | 44P | rowspan=3|0+ | rowspan=3| | rowspan=3| |- | β−, n? | 43P |- | β−, 2n? | 42P Шаблон:Isotopes table/footer
Silicon-28
Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence.[3] Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas.[4] Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a Шаблон:Convert sphere of the isotope and determing the exact number of atoms in the sample.[5][6]
Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova.[7][8]
Silicon-29
Silicon-29 is of note as the only stable silicon isotope with a nuclear spin (I = 1/2).[9] As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon.[10]
Silicon-34
Silicon-34 is a radioactive isotope wth a half-life of 2.8 seconds.[1] In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion.[11] Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full.[12][13] Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately Шаблон:Val.[14]
References
External links
Шаблон:Navbox element isotopes
- ↑ 1,0 1,1 Ошибка цитирования Неверный тег
<ref>
; для сносокNUBASE2020
не указан текст - ↑ 2,0 2,1 Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Powell, Devin (1 July 2008). "Roundest Objects in the World Created". New Scientist. Retrieved 16 June 2015.
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite news
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal