Русская Википедия:Аксион

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Информация о частице Аксио́н (Шаблон:Lang-en от axial + -on[1]) — гипотетическая нейтральная[2] псевдоскалярная элементарная частица, квант поля, постулированного для сохранения CP-инвариантности в квантовой хромодинамике в 1977 году Роберто Печчеи (R. D. Peccei) и Хелен Квинн (H. R. Quinn)[3][4] (см. Теория Печчеи — Квинн). Аксион должен представлять собой псевдоголдстоуновский бозон, возникающий в результате спонтанного нарушения симметрии Печчеи — Квинн.

Название

Название частице дано Фрэнком Вильчеком[5] по торговой марке стирального порошка[6], так как аксион должен был «очистить» квантовую хромодинамику от проблемы сильного CP-нарушения, а также из-за связи с аксиальным током. Стивен Вайнберг, независимо от Вильчека (но на неделю позже) предположивший[7] существование этих частиц, хотел дать им название «хигглет» (higglet), однако после обсуждения с Вильчеком согласился с «аксионом»[8].

Свойства аксионов

Аксион должен распадаться на два фотона[2], его масса зависит от величины вакуумного ожидания полей Хиггса Шаблон:Math как Шаблон:Math. В оригинальной теории Печчеи — Квинн Шаблон:Math ~ 100 ГэВ и масса аксиона ~ 100 кэВ, что, однако, противоречит экспериментальным данным по распаду кваркониев — [[чармоний|Шаблон:Math]] и [[боттомоний|Шаблон:Mathмезонов]], состоящих из однотипных кварка и антикварка. В модифицированной в рамках Великого Объединения теории значения Шаблон:Math значительно выше, и аксион должен быть очень слабо взаимодействующей с барионным веществом[2] частицей малой массы. Существуют работы, вводящие шкалу масс, связанную с массой аксиона, значительно выше Шаблон:Math; это приводит к значительно меньшей константе связи аксиона с другими полями и решает проблему ненаблюдения этой частицы в существующих экспериментах. Широко обсуждаются две модели такого рода. В одной из них вводятся новые кварки, несущие (в отличие от известных кварков и лептонов) заряд Печчеи — Квинн и связанные с так называемым адронным аксионом (или KSVZ-аксионом, аксионом Кима — Шифмана — Вайнштейна — Захарова)[9]. Во второй модели (так называемый GUT-аксион, DFSZ-аксион, или аксион Дайна — Фишлера — Средницкого — Житницкого)[10] отсутствуют дополнительные кварки, все кварки и лептоны несут заряд Печчеи — Квинн и, кроме того, необходимо существование двух хиггсовских дублетов.

Аксион рассматривается как один из кандидатов на роль частиц, составляющих «тёмную материю»[2][11] — небарионную составляющую скрытой массы в космологии.

В течение 20032004 годов был выполнен поиск аксионов с массой до 0,02 эВ. Аксионы обнаружить не удалось и был определён верхний предел константы фотон-аксионного взаимодействия <math>g_{a\gamma}</math> < 1,16Шаблон:E ГэВ−1 Шаблон:Нет АИ.

Астрофизические ограничения на массу аксиона и его константу связи с фотоном получены из наблюдаемой скорости потери энергии звёздами (красными гигантами, сверхновой SN1987A и т. д.). Рождение аксионов в недрах звезды привело бы к её ускоренному охлаждению[12], аналогично процессу нейтринного охлаждения.

Эксперименты по обнаружению

Аксионы, летящие от Солнца, в магнитном поле Земли могут за счёт обратного эффекта Примакова превращаться в фотоны с энергией рентгеновского диапазона. В данных европейского космического рентгеновского телескопа XMM-Newton (Multi Mirror Mission) было обнаружено, что интенсивность рентгеновского излучения, зарегистрированного зондом из области сильного магнитного поля на солнечной стороне Земли, несколько выше сигнала от магнитосферы с теневой стороны планеты. Если учесть все известные источники рентгеновского излучения, то фоновый сигнал должен быть одинаковым из областей с сильным и слабым полем[13]. Один из возможных механизмов нагрева Солнечной короны — излучение Солнцем аксионов или аксионоподобных частиц, которые превращаются в фотоны в областях с сильным магнитным полем[14].

С 2003 г. в ЦЕРНе проводится эксперимент CAST (CERN Axion Solar Telescope)[15] по обнаружению аксионов, предположительно испускаемых вследствие эффекта Примакова разогретой до ~15Шаблон:E K плазмой солнечного ядра. Детектор основан на обратном эффекте Примакова — превращении аксиона в фотон, индуцированном магнитным полем. Проводятся и другие эксперименты, направленные на поиск потока аксионов, излучаемых ядром Солнца.

Эксперимент ADMX (Axion Dark Matter Experiment)[16][17] проводится в Ливерморской национальной лаборатории (Калифорния, США) с целью поиска аксионов, предположительно образующих невидимое гало нашей Галактики. В этом эксперименте используется сильное магнитное поле для конверсии аксионов в радиочастотные фотоны; процесс усиливается с помощью резонансной полости, настраиваемой на частоты в диапазоне от 460 до 810 МГц, в соответствии с предсказываемой массой аксиона[18].

Авторы эксперимента PVLAS в 2006 заявили про обнаружение двойного лучепреломления и поворота плоскости поляризации света в магнитном поле, что было интерпретировано как возможное возникновение реальных или виртуальных аксионов в пучке фотонов. Однако в 2007 авторы объяснили эти результаты как следствие некоторых неучтённых эффектов в экспериментальной установке Шаблон:Нет АИ.

В настоящее время в ЦЕРНе идёт разработка четвёртого поколения солнечного гелиоскопа IAXO — the International Axion Observatory[19].

В 2014 году астроном британского Университета Лестера Джордж Фрейзер (George Fraser) и его соавторы заявили, что обнаружили косвенные подтверждения существования аксионов в данных космического рентгеновского телескопа XMM-Newton[13].

В 2018 году опубликовано[11] описание эксперимента по обнаружению аксионов за счёт измерения прецессии спина электрона.

В 2020 году учёные Университета Кембриджа (Великобритания) смогли подтвердить ошибочность некоторых разновидностей теории струн, которые предсказывали существование аксионов с определёнными характеристиками. При этом, учёные не исключают вероятности, что могут существовать аксионоподобные частицы с более низкими значениями конвертируемости, остающиеся недоступными для современных методов наблюдения[20].

В июне 2020 года коллаборация XENON сообщила, что в их установке XENON1T в низкоэнергетической (1...30 кэВ) области спектра электронов отдачи было зарегистрировано 285 событий, что на 53 штуки, или на 3,5[[стандартное отклонение|Шаблон:Math]], больше, чем предсказано теорией. Были рассмотрены три возможных объяснения: существование гипотетических солнечных аксионов, наличие у нейтрино магнитного момента 7Шаблон:E [[магнетон Бора|Шаблон:Math]] или загрязнение детектора тритием в ультраследовых количествах. Пока недостаточно данных для однозначного выбора из одного из этих трёх объяснений, обновление эксперимента до XENONnT в будущем должно будет решить эту проблему[21][22].

В январе 2021 было обнаружено жёсткое рентгеновское излучение, исходящее от изолированных нейтронных звёзд знаменитой Великолепной семёрки, источником этого излучения могут быть аксионы, распадающиеся на два фотона в сильных магнитных полях нейтронных звёзд[23].

Примечания

Шаблон:Примечания

Ссылки

Шаблон:ВС Шаблон:Гипотетические частицы

  1. Dictionary.com, "axion, " in Online Etymology Dictionary. Source: Douglas Harper, Historian. http://dictionary.reference.com/browse/axion Шаблон:Wayback. Accessed: February 11, 2012.
  2. 2,0 2,1 2,2 2,3 Шаблон:Cite web
  3. Шаблон:Cite doi
  4. Шаблон:Cite doi
  5. Шаблон:Cite doi
  6. Шаблон:Cite doi;
    Существует русский перевод: Шаблон:Cite doi.
    Цитата: «particles, axions. (I named them after a laundry detergent, since they clean up a problem with an axial current.)»
    Перевод: «частиц — аксионов. (Я назвал их в честь моющего средства, поскольку они расчистили проблему с аксиальными токами.)»
  7. Шаблон:Cite doi
  8. Шаблон:Статья
  9. J.E. Kim, Phys. Rev. Lett. 43 (1979), p. 103;
    M.A. Shifman, A.I. Vainstein, and V.I. Zakharov, Nucl. Phys. B 166 (1980), p. 493.
  10. A.R. Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980), p. 260;
    M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104 (1981), p. 199
  11. 11,0 11,1 Шаблон:Cite web
  12. http://www.springerlink.com/index/N510QL1R33X37427.pdfШаблон:Недоступная ссылка Astrophysical axion bounds. G Raffelt — Axions, 2008 — Springer.
  13. 13,0 13,1 Ищут давно, но не могут найти Шаблон:Wayback / Владислав Кобычев, Сергей Попов // «Троицкий вариант» № 4 (173), 24 февраля 2015 года
  14. Шаблон:Cite web
  15. Шаблон:Cite web
  16. L. D. Duffy et al., A High Resolution Search for Dark-Matter Axions, Phys. Rev. D 74, 012006 (2006); см. также препринт Шаблон:Wayback
  17. Сайт эксперимента ADMX Шаблон:Webarchive
  18. Шаблон:Статья
  19. Шаблон:Cite web
  20. Подтверждена ошибочность теории струн Шаблон:Wayback // Лента. Ру, 20 марта 2020
  21. Шаблон:Cite arxiv
  22. Шаблон:Cite web
  23. Шаблон:Cite web