Алгебраическим дополнением элемента <math>\ a_{ij}</math> матрицы <math>\ A</math> называется число
- <math>\ A_{ij}=(-1)^{i+j}M_{ij}</math>,
где <math>\ M_{ij}</math> — дополнительный минор, определитель матрицы, получающейся из исходной матрицы <math>\ A</math> путём вычёркивания i-й строки и j-го столбца.
Свойства
Алгебраическое дополнение элемента — это коэффициент, с которым этот самый элемент входит в определитель матрицы. Это утверждается следующей теоремой:
Теорема (о разложении определителя по строке/столбцу).
Определитель матрицы <math>A</math> может быть представлен в виде суммы
- <math> \det A=\sum_{j=1}^n a_{ij}A_{ij}=\sum_{i=1}^n a_{ij}A_{ij}</math>
Для алгебраического дополнения справедливо следующее утверждение:
Лемма о фальшивом разложении определителя.
Сумма произведений элементов одной строки (столбца) на соответствующие алгебраические дополнения элементов другой строки (соответственно столбца) равна нулю, то есть
<math>\ \sum_{j=1}^n a_{i_1 j}A_{i_2 j}=\sum_{i=1}^n a_{i j_1}A_{i j_2}=0</math> при <math>i_1\neq i_2</math> и <math>j_1\neq j_2</math>.
Из этих утверждений следует алгоритм нахождения обратной матрицы:
- заменить каждый элемент исходной матрицы на его алгебраическое дополнение,
- транспонировать полученную матрицу — в результате будет получена союзная матрица,
- разделить каждый элемент союзной матрицы на определитель исходной матрицы.
См. также
Шаблон:Rq
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|