Альтернативная алгебра — алгебра над полем, умножение в которой является альтернативным[1]. Каждая ассоциативная алгебра, очевидно, альтернативна, однако существуют и неассоциативные альтернативные алгебры, примером которых являются октавы. Обобщение октав, седенионы, уже не обладают свойством альтернативности.
Связь с алгеброй Мальцева
Для альтернативной алгебры и алгебры Мальцева существует аналог теоремы Пуанкаре — Биркгофа — Витта. Имеется следующая взаимосвязь между альтернативными алгебрами и алгебрами Мальцева: замена умножения g(A,B) в альтернативной алгебре M операцией коммутатора [A,B]=g(A,B)-g(B,A), превращает её в алгебру Мальцева <math>M^{(-)}</math>.
Ассоциатор
С использованием ассоциатора
- <math>[x,y,z] = (xy)z - x(yz)</math>
определяющие альтернативную алгебру тождества примут вид[2]
- <math>[x,x,y] = 0</math>
- <math>[y,x,x] = 0</math>
для любых элементов <math>x</math> и <math>y.</math> Отсюда, в силу полилинейности ассоциатора, несложно получить, что
- <math>[x,y,z] + [y,x,z] = 0</math>
- <math>[x,y,z] + [x,z,y] = 0</math>
Таким образом, в альтернативной алгебре ассоциатор является альтернативной операцией:
- <math>[x,y,z] = \mathrm{sgn}\,\sigma [\sigma(x),\sigma(y),\sigma(z)]</math>
где <math>\sigma</math> — перестановка элементов <math>x,y,z,</math> <math>\mathrm{sgn}\,\sigma</math> — чётность этой перестановки. Верно и обратное: если ассоциатор альтернативен, то кольцо альтернативно. Именно из-за связи с альтернативностью ассоциатора альтернативные кольца получили такое название.
Аналогично можно показать, что для альтернативности ассоциатора достаточно выполнения любых двух из следующих тождеств:
- <math>x(xy) = (xx)y</math>
- <math>(yx)x = y(xx)</math>
- <math>(xy)x = x(yx)</math>
откуда сразу следует третье из тождеств.
Примечания
Шаблон:Примечания
Литература
См. также
Шаблон:Algebra-stub
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
- ↑ Шаблон:Книга
- ↑ Жевалков К.А., Слинько А.М., Шестаков И.П., Ширшов А.И., "Кольца, близкие к ассоциативным" М.: Наука, 1978. Глава 2, Параграф 3. стр. 49-55.