Русская Википедия:Бомбелли, Рафаэль

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Другие значения Шаблон:Учёный Рафаэль Бомбелли (Шаблон:Lang-it; ок. 1526, Болонья — 1572, вероятно, Рим) — итальянский Шаблон:Математик, инженер-гидротехник. Настоящая фамилия: Маццоли (Mazzoli), ему пришлось сменить фамилию при возвращении в Болонью, потому что его дед был некогда казнён как заговорщикШаблон:Sfn.

Известен тем, что ввёл в математику комплексные числа как легальный объект и разработал базовые правила действий с ними. Перевёл и опубликовал «Арифметику» Диофанта; благодаря этому событию начинается история теории чисел в Европе.

Биография

Рафаэль Маццоли родился в Болонье в семье торговца шерстью Антонио Маццоли и дочери портного Диаманте Скудьери (Diamante Scudieri), он был старшим из шести их детей. Учился архитектуре. Как раз в это время открытия болонского математика дель Ферро в изложении Тартальи вызвали подъём массового интереса к математике, который захватил и БомбеллиШаблон:Sfn.

Будучи по делам в Риме, Бомбелли познакомился с профессором университета Антонио Мария Пацци, который незадолго до того обнаружил в Ватиканской библиотеке рукопись «Арифметики» Диофанта. Друзья договорились перевести её на латинский. Одновременно с переводом Бомбелли пишет свой трактат «Алгебра» в трёх книгах, куда включил не только свои разработки, но и множество задач Диофанта с собственными комментариями. Однако главную ценность труда Бомбелли составили его собственные открытия. Он планировал дополнить трактат ещё двумя книгами геометрического содержания, но не успел их завершить. В 1923 году незаконченные рукописи последних томов «Алгебры» были обнаружены историком Шаблон:IwШаблон:Sfn и опубликованы в 1929 году.

Научная деятельность

Алгебра

Главный труд Бомбелли — «Алгебра» (L’Algebra), написана около 1560 года, издана в 1572 году в Венеции и переиздана в 1579 году в Болонье.

«Алгебра» примечательна во многих отношениях. Бомбелли, первый в Европе, свободно оперирует с отрицательными числами, приводит правила работы с ними, включая правило знаков для умножения. Он также первым, опередив своё время, оценил пользу комплексных чисел, в частности для решения уравнений третьей степени по формулам Кардано.

Пример[1]. Уравнение <math>x^3 = 15x + 4</math> имеет вещественный корень x = 4, однако по формулам Кардано получаем: <math>x=\sqrt[3]{2+11i}+\sqrt[3]{2-11i} </math>.

Бомбелли обнаружил, что <math>\sqrt[3]{2 \pm 11i}=2 \pm i</math>, откуда сразу получается нужный вещественный корень. Он подчеркнул, что в подобных (неприводимых) случаях комплексные слагаемые в формуле Кардано всегда сопряжены, поэтому при их сложении получается вещественный корень. Данное уравнение имеет ещё два вещественных корня (<math>-2\pm \sqrt{3}</math>), однако отрицательные значения в тот период ещё не рассматривались как допустимые. Разъяснения Бомбелли положили начало успешному применению в математике комплексных чисел.

Исчерпывающее исследование неприводимого случая требовало умения извлекать корни из комплексных чисел, а этого умения у Бомбелли ещё не было. Полностью проблему решили Виет и де Муавр.

Файл:Bombelli brackets (1550).jpg
Появление квадратных скобок у Бомбелли; записано выражение: <math>\sqrt{7+\sqrt{14}}</math>

Бомбелли также придумал первые скобки; они имели вид прямой и зеркально-отражённой буквы L. Привычные нам круглые скобки появились в том же XVI веке, однако в общее употребление их ввели только Лейбниц и Эйлер. Бомбелли первый стал использовать числовое (а не словесное, как ранее) обозначение для показателя степени, помечаемое специальной дужкой снизу. Современное обозначение показателя ввёл в широкое обращение Декарт[2].

Цепные дроби

Из других научных достижений Бомбелли следует отметить фактическое применение цепных дробей для вычисления квадратных корней из натуральных чисел. Понятия цепной дроби у Бомбелли ещё не было, и ниже излагается алгоритм в более поздней версии, данной Катальди (1613 год)[3].

Чтобы найти значение <math> \sqrt{n} </math>, сначала определим его целое приближение: <math> \sqrt{n} = a \pm r </math>, где <math> 0<r<1\ </math>. Тогда <math> n=(a \pm r)^2=a^2\pm 2ar+r^2\ </math>. Отсюда несложно вывести, что <math> r=\frac{|n-a^2|}{2a\pm r}</math>. Повторно подставляя полученное выражение в формулу <math> \sqrt{n} = a \pm r </math>, мы получаем разложение в цепную дробь:

<math>a\pm \frac{|n-a^2|}{2a\pm \frac{|n-a^2|}{2a\pm \frac{|n-a^2|}{2a\pm \cdots }}}</math>

Для оценки точности полученных приближений можно использовать одно из свойств цепных дробей: последовательные значения подходящих дробей колеблются около точного значения, чередуя приближения с избытком и недостатком.

Пример. Для <math>\sqrt{13}, a=3 </math> мы получаем последовательные приближения:

<math> 3\frac{2}{3},\ 3\frac{3}{5},\ 3\frac{20}{33},\ 3\frac{66}{109},\ 3\frac{109}{180},\ 3\frac{720}{1189},\ \cdots</math>

Последняя дробь равна <math>3.605550883</math>…, в то время как <math>\sqrt{13}\ \approx 3.605551275</math>.

Другие достижения

Бомбелли занимался древними задачами удвоения куба и трисекции угла и сумел доказать, что их можно свести к решению кубического уравненияШаблон:Sfn.

Память

В честь Бомбелли названы:

Примечания

Шаблон:Примечания

Труды

Литература

Ссылки

Шаблон:ВС