Γ-сходимость (Гамма-сходимость) – концепция сходимости функционалов, возникающая в вариационном исчислении, а также при изучении дифференциальных уравнений в частных производных.
Определение
Пусть <math>X </math> – топологическое пространство. Тогда последовательность функционалов <math>F_n:X\to [0,+\infty)</math> Γ-сходится к <math> F </math>, если
- Для любой последовательности <math> x_n \in X</math>, такой что <math> x_n \to x </math> при <math> n \to \infty</math>,
- <math> F(x) \le \liminf\limits_{n\to\infty} F_n\left(x_n \right)</math>.
- Для любого <math>x \in X </math> существует последовательность <math>x_n </math>, сходящаяся к <math> x </math>, такая что
- <math> F(x) \ge \limsup\limits_{n\to\infty} F_n\left(x_n \right) </math>.
Первое условие означает что <math> F </math> является асимптотической нижней гранью <math> F_n</math>. Второе условие означает что эта нижняя грань является точной.
Свойства
- Сходимость минимизирующих последовательностей: если <math>F_n</math> Γ-сходится к <math>F</math>, и если <math>x_n</math> является минимизирующей последовательностью <math>F_n</math>, тогда любая предельная точка последовательности <math>x_n</math> является (локальным) минимумом <math>F</math>.
- Γ-предел всегда является слабо полунепрерывным снизу (а следовательно, и полунепрерывным снизу).
- Γ-сходимость стабильна относительно непрерывных возмущений: Если <math>F_n</math> Γ-сходится к <math>F</math>, и если <math>G:X\to[0,+\infty)</math> – непрерывна, тогда <math>F_n+G</math> Γ-сходится к <math>F+G</math>.
- Постоянная последовательность <math>F_n=F</math> не обязательно Γ-сходится к <math>F</math>. Тем не менее, она сходится к "релаксации" <math>F</math> – к наибольшему полунепрерывному снизу функционалу, ограниченному сверху функционалом <math>F</math>.
Приложения
Одним из наиболее важных приложений <math>\Gamma</math>-сходимости является теория упругости.
Шаблон:Изолированная статья
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|