Русская Википедия:Гаусс, Карл Фридрих

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Дзт Шаблон:Учёный Иога́нн Карл Фри́дрих Га́усс (Шаблон:Lang-de; Шаблон:ДР, Шаблон:МР — Шаблон:ДС, Шаблон:МС) — немецкий Шаблон:Математик, Шаблон:Механик, Шаблон:Физик, Шаблон:Астроном и геодезистШаблон:Sfn. Считается одним из величайших математиков всех времён, «королём математиков»[1].

Лауреат медали Копли (1838), член Лондонского королевского общества (1804)[2], иностранный член Парижской (1820)[3] и Шведской (1821) академий наук, иностранный член-корреспондент (1802) и иностранный почётный член (1824) Петербургской академии наук[4].

Биография

1777—1798 годы

Файл:Braunschweig Brunswick Geburtshaus CF Gauss (1914).jpg
Дом, где родился Гаусс (не сохранился)

Родился в немецком герцогстве Брауншвейг. Дед Гаусса был бедным крестьянином; отец, Гебхард Дитрих Гаусс, — садовником, каменщиком, смотрителем каналов; мать, Доротея Бенц, — дочерью каменщика. Будучи неграмотной, мать не записала дату рождения сына, запомнив только, что он родился в среду, за восемь дней до праздника Вознесения, который отмечается спустя 40 дней после Пасхи. В 1799 г. Гаусс вычислил точную дату своего рождения, разработав метод определения даты Пасхи на любой год[5].

Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял арифметические ошибки отца. Известна история, в которой юный Гаусс выполнил некое арифметическое вычисление гораздо быстрее всех одноклассников; обычно при изложении этого эпизода упоминается вычисление суммы чисел от 1 до 100, но первоисточник этого неизвестен[6]. До самой старости он привык большую часть вычислений производить в уме.

С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу окончить колледж Collegium Carolinum в Брауншвейге (1792—1795).

Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую и французскую литературу, которые читал в подлиннике. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.

В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в теории чисел, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».

С 1795 по 1798 год Гаусс учился в Гёттингенском университете, где его учителем был А. Г. КестнерШаблон:Sfn. Это — наиболее плодотворный период в жизни Гаусса.

1796 год: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки:

  • если n — простое число, то оно должно быть вида <math>n=2^{2^k}+1</math> (числом Ферма);
  • если n — составное число, то его каноническое разложение должно иметь вид <math>n=2^k p_1\dots p_m</math>, где <math>p_i</math> — различные простые числа Ферма.

Этим открытием Гаусс очень дорожил и завещал изобразить на своей могиле правильный семнадцатиугольник, вписанный в круг.

С 1796 года Гаусс вёл краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).

Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.

1798 год: закончен шедевр «Арифметические исследования» (Шаблон:Lang-lat), напечатан только в 1801 году.

В этом труде подробно излагается теория сравнений в современных (введённых им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицы используются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено доказательство квадратичного закона взаимности и т. д. Гаусс любил говорить, что математика — царица наук, а теория чисел — царица математики.

1798—1816 годы

Файл:Braunschweig Brunswick Gauss-Denkmal komplett (2006).JPG
Памятник Гауссу работы Фрица Шапера в Брауншвейге с изображённой на нём 17-лучевой звездой
Файл:Braunschweig Gauss-Denkmal 17-eckiger Stern.jpg

В 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.

Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это сделать, наиболее близко к цели подошёл Д'Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных её доказательства.

С 1799 года Гаусс — приват-доцент Брауншвейгского университета.

1801 год: избирается членом-корреспондентом Петербургской Академии наук.

После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки, в первую очередь астрономию. Поводом послужило открытие малой планеты Церера (1801), потерянной вскоре после обнаружения. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления, пользуясь разработанным им же новым вычислительным методомШаблон:Sfn, и с большой точностью указал место, где искать «беглянку»; там она, к общему восторгу, и была вскоре обнаружена.

Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.

1805 год: Гаусс женился на Иоганне Остгоф. У них было трое детей, выжили двое — сын Йозеф и дочь Минна.

1806 год: от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.

1807 год: наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму — 2000 франков — требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклоняет их деньги; тогда неизвестный из Франкфурта присылает ему 1000 гульденов, и этот дар приходится принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте (по другим данным — епископ Франкфурта).

1809 год: новый шедевр, «Теория движения небесных тел». Изложена каноническая теория учёта возмущений орбит.

Как раз в четвёртую годовщину свадьбы умерла Иоганна, вскоре после рождения третьего ребёнка. Этот год был самым тяжёлым для Гаусса. В следующем, 1810 году он женился вновь — на Вильгельмине («Минне») Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличилось до пяти.

1810 год: новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.

1811 год: появилась новая комета. Гаусс быстро и очень точно рассчитал её орбиту. Начал работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.

1812 год: исследование гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.

Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.

1815 год: публикует первое строгое доказательство основной теоремы алгебры.

1816—1855 годы

1820 год: Гауссу поручают произвести геодезическую съёмку Ганновера. Для этого он разработал соответствующие вычислительные методы (в том числе методику практического применения своего метода наименьших квадратов), приведшие к созданию нового научного направления — высшей геодезии, и организовал съёмку местности и составление картШаблон:Sfn.

1821 год: в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит понятие «гауссовой кривизны». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на написание его классической диссертации о «римановой геометрии».

Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей» (1822). В ней свободно использовались общие криволинейные координаты на поверхности. Гаусс далеко развил метод конформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро-, гидродинамике и электростатике.

1824 год: избирается иностранным почётным членом Петербургской Академии наук.

Файл:Bendixen - Carl Friedrich Gauß, 1828.jpg
Гаусс в 1828 г.

1825 год: открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней.

1829 год: в замечательной работе «Об одном новом общем законе механики», состоящей всего из четырёх страниц, Гаусс обосновываетШаблон:Sfn новый вариационный принцип механики — принцип наименьшего принуждения. Принцип применим к механическим системам с идеальными связями и сформулирован Гауссом так: «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершённом, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, то есть происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной»[7].

Файл:Göttingen-Gauß-Weber-Monument.01.JPG
Гаусс и Вебер. Скульптура в Гёттингене.

1831 год: умерла вторая жена, у Гаусса началась тяжелейшая бессонница. В Гёттинген приехал приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.

1832 год: «Теория биквадратичных вычетов». С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же Гаусс приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.

1833 год: Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.

1837 год: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остаётся в одиночестве.

1839 год: 62-летний Гаусс овладевает русским языком и в письмах в Петербургскую Академию просит прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с интересом Гаусса к работам Лобачевского, который в 1842 году по рекомендации Гаусса был избран иностранным членом-корреспондентом Гёттингенского королевского общества.

В том же 1839 году Гаусс в сочинении «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния» изложил основы теории потенциала, включая ряд основополагающих положений и теорем — например, основную теорему электростатики (теорема Гаусса)Шаблон:Sfn.

1840 год: в работе «Диоптрические исследования» Гаусс разработал теорию построения изображений в сложных оптических системахШаблон:Sfn.

Умер Гаусс 23 февраля 1855 года в Гёттингене. Король Ганновера Георг V приказал отчеканить в честь Гаусса медаль, на которой были выгравированы портрет Гаусса и почётный титул «Mathematicorum Princeps» — «король математиков».

Научная деятельность

С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: в алгебре, теории чисел, дифференциальной и неевклидовой геометрии, математическом анализе, теории функций комплексного переменного, теории вероятностей, а также в аналитической и небесной механике, астрономии, физике и геодезииШаблон:Sfn. «В каждой области глубина проникновения в материал, смелость мысли и значительность результата были поражающими. Гаусса называли „королём математиков“»[8] (Шаблон:Lang-lat).

Гаусс чрезвычайно строго относился к своим печатным трудам и никогда не публиковал даже выдающиеся результаты, если считал свою работу над этой темой незавершённой. На его личной печати было изображено дерево с несколькими плодами, под девизом: «Pauca sed matura» (немного, но зрело)[9]. Изучение архива Гаусса показало, что он медлил с публикацией ряда своих открытий, и в результате его опередили другие математики. Вот неполный перечень упущенных им приоритетов.

Несколько студентов, учеников Гаусса, стали выдающимися математиками, например: Риман, Дедекинд, Бессель, Мёбиус.

Алгебра

Гаусс дал первые строгие, даже по современным критериям, доказательства основной теоремы алгебры.

Он открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем. Указал знакомую теперь всем геометрическую модель комплексных чисел и действий с ними.

Гаусс дал классическую теорию сравнений, открыл конечное поле вычетов по простому модулю, глубоко проник в свойства вычетов.

Геометрия

Гаусс впервые начал изучать внутреннюю геометрию поверхностей. Он открыл характеристику поверхности (гауссову кривизну), которая не изменяется при изгибаниях, тем самым заложив основы римановой геометрии. В 1827 году опубликовал полную теорию поверхностей. Доказал Theorema Egregium — основную теорему теории поверхностей. Труды Гаусса по дифференциальной геометрии дали мощный толчок развитию этой науки на весь XIX век. Попутно он создал новую науку — высшую геодезию.

Гаусс первым (по некоторым даннымШаблон:Sfn, примерно в 1818 году) построил основы неевклидовой геометрии и поверил в её возможную реальность[11]. Однако за всю свою жизнь он ничего не опубликовал на эту тему, вероятно, опасаясь быть непонятым из-за того, что развиваемые им идеи шли вразрез с догматом евклидовости пространства в доминирующей в то время кантовской философией)[12]. Тем не менее, сохранилось письмо Гаусса к Лобачевскому, в котором ясно выражено его чувство солидарности, а в личных письмах, опубликованных после его смерти, Гаусс восхищается работами Лобачевского. В 1817 году он писал астроному В. Ольберсу[13]:

Я прихожу всё более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка. Может быть, в другой жизни мы придём к взглядам на природу пространства, которые нам теперь недоступны. До сих пор геометрию приходится ставить не в один ранг с арифметикой, существующей чисто a priori, а скорее с механикой.

В его бумагах обнаружены содержательные заметки по тому предмету, что позже назвали топологией. Причём он предсказал фундаментальное значение этого предмета.

Древняя проблема построения правильных многоугольников с помощью циркуля и линейки была решена Гауссом окончательно (см. теорему Гаусса — Ванцеля).

Математический анализ

Гаусс продвинул теорию специальных функций, рядов, численные методы, решение задач математической физики. Создал математическую теорию потенциала.

Много и успешно занимался эллиптическими функциями, хотя почему-то ничего не публиковал на эту тему.

Аналитическая механика

Главным вкладом Гаусса в аналитическую механику стал его принцип наименьшего принуждения. Для аналитического оформления данного принципа большое значение имелаШаблон:Sfn работа Г. Шеффлера (1820—1903) «О Гауссовом основном законе механики»[14], опубликованная в 1858 г. В ней Шеффлер переопределилШаблон:Sfn принуждение (Шаблон:Lang-de) как следующее (в современных обозначенияхШаблон:Sfn) выражение:

<math>Z\;=\;\frac{1}{2}\;\overset{}{\overset{N}{\underset{i=1}{\sum}}}\,m_{i}\left(\mathbf{w}_{i}-\frac{\mathbf{F}_{i}}{m_{i}}\right)^{2}</math> ,

где <math>N</math> — число точек, входящих в систему, <math>m_{i}</math> — масса <math>i</math>-й точки, <math>\mathbf{F}_{i}</math> — равнодействующая приложенных к ней активных сил, <math>\mathbf{w}_{i}</math> — допустимое ускорение данной точки (в действительности Шеффлер пользовался скалярной формой записи, причём множитель перед знаком суммы у него отсутствовал). Под «допустимыми ускорениями» здесь понимаютсяШаблон:Sfn такие ускорения точек системы, которые в данном её состоянии можно реализовать, не нарушая связей; действительные ускорения (возникающие под действием реально приложенных к точкам системы сил) представляют собой частный случай допустимых ускорений.

После этого принцип Гаусса обрёл ту форму, которая используется при его изложении и в современных курсах теоретической механики: «При действительном движении механической системы с идеальными связями принуждение <math>Z</math> принимает значение, наименьшее из всех возможных значений при движениях, совместимых с наложенными связями»[15]. Данный принцип относитсяШаблон:Sfn к числу дифференциальных вариационных принципов механики. Он обладает весьма большой общностью, так как применим к самым различным механическим системам: к консервативным и неконсервативным, к голономным и неголономным. Поэтому, в частности, он часто используетсяШаблон:Sfn в качестве исходного пункта при выводе уравнений движения неголономных систем.

Астрономия

В астрономии Гаусс, в первую очередь, интересовался небесной механикой, изучал орбиты малых планет и их возмущения. Он предложил теорию учёта возмущений и неоднократно доказывал на практике её эффективность.

В 1809 году Гаусс нашёл способ определения элементов орбиты по трём полным наблюдениям (если для трёх измерений известны время, прямое восхождение и склонение).

Другие достижения

Для минимизации влияния ошибок измерения Гаусс использовал свой метод наименьших квадратов, который сейчас повсеместно применяется в статистике. Хотя Гаусс не первый открыл распространённый в природе нормальный закон распределения, но он настолько тщательно его исследовал, что график распределения с тех пор часто называют гауссианой.

В физике Гаусс развил теорию капиллярности, теорию системы линз. Заложил основы математической теории электромагнетизма и при этом первым ввёл понятие потенциала электрического поля, а в 1845 г. пришёл к мысли о конечной скорости распространения электромагнитных взаимодействий. В 1832 г. создал абсолютную систему мер, введя три основные единицы: единицу длины — 1 мм, единицу времени — 1 с, единицу массы — 1 мг; эта система послужила прообразом системы единиц СГС. Совместно с Вебером Гаусс построил первый в Германии электромагнитный телеграф. Изучая земной магнетизм, Гаусс изобрёл в 1837 г. униполярный магнитометр, в 1838 г. — бифилярныйШаблон:Sfn.

Увековечение памяти

Шаблон:Main В честь Гаусса названы:

Его портрет Файл:10 DM Serie4 Vorderseite.jpg и изобретённый им измерительный инструмент[16] «гелиотроп» Файл:10 DM Serie4 Rueckseite.jpg изображены на вышедшей из оборота, но предоставляющей интерес для бонистов банкноте в 10 марок.

С именем Гаусса связано множество теорем и научных терминов в математике, астрономии и физике, см. Список объектов, названных в честь Гаусса. Некоторые из них: Шаблон:Кол

Шаблон:Конец кол

В литературе и кино

Жизни Гаусса и Александра фон Гумбольдта посвящён фильм «Измеряя мир» («Die Vermessung der Welt», 2012, Германия). Фильм снят по одноимённому роману писателя Даниэля Кельмана[17].

Переводы трудов на русский язык

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin

Шаблон:Refend

Ссылки

Внешние ссылки

  1. Гиндикин С. Г. Рассказы о физиках и математиках. Шаблон:Wayback — Шаблон:М.: МЦНМО, 2001. Глава «Король математиков».
  2. Шаблон:RS id
  3. Les membres du passé dont le nom commence par G Шаблон:WaybackШаблон:Ref-fr
  4. Шаблон:Сотрудник РАН
  5. Шаблон:Cite web
  6. Шаблон:Cite web
  7. Гаусс К. Об одном новом общем принципе механики (Über ein neues allgemeines Grundgesetz der Mechanik) / Journal für Reine und Angewandte Mathematik. 1829. Bd. IV. — S. 232—235.) // Вариационные принципы механики: Сб. статей / Под ред. Л. С. Полака. — Шаблон:М.: Физматгиз, 1959. — 932 с. — С. 170—172.
  8. Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. Т. 1. — Шаблон:М.: Наука, 1978. — С. 52.
  9. Дербишир Дж. Простая одержимость. Бернхард Риман и величайшая нерешённая проблема в математике. — Шаблон:М.: Астрель, 2010. — ISBN 978-5-271-25422-2. — С. 76—77.
  10. Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. М.: Гостехиздат, 1956, С.119—120.
  11. Гаусс К. Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии Шаблон:Wayback // Основания геометрии. — Шаблон:М.: ГИТТЛ, 1956.
  12. Обычно говорят, что он боялся быть непонятым. Действительно, в одном письме, где затрагивается вопрос о пятом постулате и неевклидовой геометрии, Гаусс пишет: «бойтесь крика беотийцев» <…> Возможно, однако, другое объяснение молчания Гаусса: он один из немногих понимал, что, как бы много интересных теорем неевклидовой геометрии ни было выведено, это ещё ничего не доказывает — всегда теоретически остается возможность, что в качестве дальнейших следствий будет получено противоречивое утверждение. А может быть, Гаусс понимал (или чувствовал), что в то время (первая половина XIX в.) ещё не найдены математические понятия, позволяющие точно поставить и решить этот вопрос. // Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, гл. XII, пар. 2, — Физматлит, Москва, 2009.
  13. Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. — Шаблон:М.: Гостехиздат, 1956. — С. 103.
  14. Göttinger Digitalisierungszentrum: Seitenansicht
  15. Дронг В. И., Дубинин В. В., Ильин М. М. и др. Курс теоретической механики / Под ред. К. С. Колесникова. — Шаблон:М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. — 758 с. — ISBN 978-5-7038-3490-9. — С. 526.
  16. Шаблон:Cite web
  17. Шаблон:Cite web

Шаблон:Выбор языка Шаблон:Премия Лаланда по астрономии