Русская Википедия:Гетерогенный катализ

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Hydrogenation on catalyst.svg
Гидрирование этилена на каталитической твёрдой поверхности (1) Адсорбция (2) Реакция (3) Десорбция

Гетерогенный катализ — это катализ, в котором фаза катализатора и фаза реагентов или продуктов являются раздельными[1]. Этим процесс отличается от гомогенного катализа, в котором продукты и катализатор находятся в одной фазе.

Реагирующая фаза может быть не только твёрдой, жидкой или газообразной, но и быть не смешивающейся смесью (например, нефть и вода) или любой другой, если создаёт границу раздела фаз.

Гетерогенный катализ обычно включает твердофазные катализаторы и газообразные реагенты. В этом случае на поверхности катализатора происходит цикл молекулярной адсорбции, реакции и десорбции. Термодинамика, массообмен и теплоперенос влияют на скорость (кинетику) реакции[2].

Гетерогенный катализ играет важную роль в промышленности, потому что он обеспечивает более быстрое крупномасштабное производство и избирательное образование продукта[3]. Примерно 35% мирового ВВП зависит от катализа[4]. Производство 90% химикатов (по объёму) обеспечивается твёрдыми катализаторами[2]. Химическая и энергетическая промышленность в значительной степени полагаются на гетерогенный катализ.

Например, в процессе Габера-Боша катализаторы на основе металлов используются для синтеза аммиака, важного компонента удобрений; в 2016 году было произведено 144 млн тонн аммиака[5].

Адсорбция

Адсорбция является важным этапом гетерогенного катализа. Адсорбция – это процесс, посредством которого молекула газовой (или растворённой) фазы (адсорбат) связывается с твёрдыми (или жидкими) поверхностными атомами (адсорбент). Обратной стороной адсорбции является десорбция, когда адсорбат отщепляется от адсорбента. В реакции, протекающей при гетерогенном катализе, катализатором является адсорбент, а реагентами — адсорбат.

Типы адсорбции

Различают два типа адсорбции: физисорбция, слабосвязанная адсорбция, и хемосорбция, сильносвязанная адсорбция. Многие процессы в гетерогенном катализе лежат между двумя крайностями.

Модель Леннарда-Джонса обеспечивает основу для предсказания молекулярных взаимодействий в зависимости от расстояния между атомами[6].

Физисорбция

При физической сорбции молекула притягивается к поверхностным атомам за счёт сил Ван-дер-Ваальса. К ним относятся диполь-дипольные взаимодействия, индуцированные дипольные взаимодействия и лондоновские дисперсионные силы. Между адсорбатом и адсорбентом не образуются химические связи, и их электронные состояния остаются относительно невозмущёнными. Типичные энергии для физической сорбции составляют от 3 до 10 ккал/моль[2].

В гетерогенном катализе, когда молекула реагента физически сорбируется на катализаторе, обычно говорят, что она находится в состоянии предшественника, промежуточном энергетическом состоянии перед хемосорбцией, более прочно связанной адсорбцией[6]. Из исходного состояния молекула может подвергаться хемосорбции, десорбции или миграции по поверхности[7]. Природа исходного состояния может влиять на кинетику реакции[7].

Хемосорбция

Когда молекула приближается достаточно близко к поверхностным атомам катализатора, так что их электронные облака перекрываются, может происходить хемосорбция.

При хемосорбции адсорбат и адсорбент имеют общие электроны, что означает образование химических связей. Типичные энергии для хемосорбции находятся в диапазоне от 20 до 100 ккал/моль[2]. Два случая хемосорбции:

  • Молекулярная адсорбция: адсорбат остаётся нетронутым. Примером является связывание алкена платиной.
  • Адсорбция диссоциации: одна или несколько связей разрываются одновременно с адсорбцией. В этом случае барьер диссоциации влияет на скорость адсорбции. Примером этого является связывание H2 с металлическим катализатором, где связь H-H разрывается при адсорбции.

Реакции на поверхности

Файл:Catalytic reaction coordinate.jpg
Координата реакции. (A) Некатализируемый (B) Катализируемый (C) Катализируемый с дискретными промежуточными продуктами (переходные состояния)

Большинство реакций на поверхности металлов протекают в несколько стадий, в которой каталитические промежуточные продукты циклически производятся и расходуются[8]. Два основных механизма поверхностных реакций могут быть описаны для A + B → C[2].

  • Механизм Ленгмюра-Хиншельвуда: молекулы реагентов А и В адсорбируются на каталитической поверхности. Адсорбируясь на поверхности, они соединяются с образованием продукта С, который затем десорбируется.
  • Механизм Элий-Ридила: одна молекула реагента А адсорбируется на каталитической поверхности. Без адсорбции В реагирует с абсорбированным А с образованием С, который затем десорбируется с поверхности.

Большинство гетерогенно-катализируемых реакций описываются моделью Ленгмюра-Хиншелвуда[9].

При гетерогенном катализе реагенты диффундируют из объёмной жидкой фазы и адсорбируются на поверхности катализатора. Центр адсорбции не всегда является активным центром катализатора, поэтому молекулы реагентов должны мигрировать по поверхности к активному центру. В активном центре молекулы реагентов будут реагировать с образованием молекулы (молекул) продукта, следуя более энергетически лёгким путём через каталитические промежуточные продукты. Затем молекулы продукта десорбируются с поверхности и диффундируют. Сам катализатор остаётся неповреждённым и может участвовать в дальнейших реакциях. Явления переноса, такие как перенос тепла и массы, также играют роль в наблюдаемой скорости реакции.

Строение катализатора

Файл:Zeolite-ZSM-5-3D-vdW.png
Структура цеолита. Распространённый материал для носителя катализатора в гидрокрекинге. Также действует как катализатор при алкилировании и изомеризации углеводородов.

Катализаторы не проявляют активности по отношению к реагентам по всей своей поверхности: только определённые участки обладают каталитической активностью, называемые активными центрами. Площадь поверхности твёрдого катализатора сильно влияет на количество доступных активных центров. В промышленной практике твёрдые катализаторы часто бывают достаточно пористыми для увеличения площади поверхности, обычно достигающей 50–400 м2[2]. Некоторые мезопористые силикаты, такие как МСМ-41, имеют площадь поверхности более 1000 м2[10]. Пористые материалы являются экономически эффективными из-за их высокого отношения площади поверхности к массе и повышенной каталитической активности.

Во многих случаях твёрдый катализатор диспергируют на носителе, чтобы увеличить площадь поверхности (увеличить количество активных центров) и обеспечить стабильность[2]. Обычно носители для катализаторов представляют собой инертные материалы с высокой температурой плавления, но они также могут быть сами по себе каталитически активными. Большинство носителей катализаторов являются пористыми (часто на основе углерода, диоксида кремния, цеолита или оксида алюминия) и выбираются из-за их высокого отношения площади поверхности к массе[4]. Для проводимой реакции пористые носители должны быть выбраны таким образом, чтобы реагенты и продукты могли проникать в носитель и выходить из него.

Часто в сырье для реакции или на катализатор намеренно добавляют вещества, чтобы повлиять на каталитическую активность, селективность и/или стабильность. Эти соединения называются промоторами. Например, оксид алюминия (Al2O3) добавляют во время синтеза аммиака для обеспечения большей стабильности за счёт замедления процессов спекания на Fe-катализаторе[2].

Принцип Сабатье

Принцип Сабатье можно считать одним из краеугольных камней современной теории катализа[11].

Принцип Сабатье гласит, что взаимодействие поверхности и адсорбатов должно быть оптимальным: не слишком слабым, чтобы быть инертным по отношению к реагентам, и не слишком сильным, чтобы отравить поверхность и избежать десорбции продуктов[12]. Это утверждение является качественным: обычно количество адсорбатов и переходных состояний, связанных с химической реакцией, велико, поэтому оптимум приходится искать в многомерном пространстве. Разработка катализатора в таком многомерном пространстве является невозможной вычислительной задачей. Кроме того, такой процесс оптимизации был бы далеко не интуитивным.

Деактивация катализатора

Дезактивация катализатора определяется как потеря каталитической активности и/или селективности с течением времени.

Вещества, снижающие скорость реакции, называются каталитическими ядами. Яды хемосорбируются на поверхности катализатора и уменьшают количество доступных активных центров для связывания молекул реагентов[13]. Обычные яды включают элементы группы V, VI и VII (например, S, O, P, Cl), некоторые токсичные металлы (например, As, Pb) и адсорбирующие вещества с множественными связями (например, СО, ненасыщенные углеводороды)[6] [13]. Например, сера нарушает производство метанола, отравляя катализатор Cu/ZnO [14]. Вещества, увеличивающие скорость реакции, называются промоторами. Например, присутствие щелочных металлов в синтезе аммиака увеличивает скорость диссоциации N2[14].

Присутствие ядов и промоторов может изменить энергию активации лимитирующей стадии и повлиять на селективность катализатора в отношении образования определённых продуктов. В зависимости от количества, вещество может быть благоприятным или неблагоприятным для химического процесса. Например, при производстве этилена небольшое количество хемосорбированного хлора будет действовать как активатор, повышая селективность Ag-катализатора по отношению к этилену по сравнению с CO2, в то время как слишком много хлора будет действовать как яд для катализатора[6].

Другие механизмы дезактивации катализатора включают:

  • Спекание: при нагревании, дисперсные каталитические частицы металла могут мигрировать по поверхности носителя и образовывать кристаллы. Это приводит к уменьшению площади поверхности катализатора;
  • Загрязнение: осаждение материалов из жидкой фазы на твердофазный катализатор или поверхность промотора. Это приводит к закупорке активного центров или пор;
  • Закоксовывание: отложение тяжёлых, богатых углеродом твёрдых частиц на поверхности из-за разложения углеводородов;
  • Реакции пар-твёрдое тело: образование неактивного поверхностного слоя и/или образование летучего соединения, выходящего из реактора. Это приводит к потере площади поверхности и/или материала катализатора[13];
  • Твердофазное превращение: диффузия атомов носителя катализатора в твёрдом состоянии к поверхности с последующей реакцией, в результате которой образуется неактивная фаза. Это приводит к потере площади поверхности катализатора;
  • Эрозия: постоянное истирание каталитического материала, характерное для реакторов с псевдоожиженным слоем. Это приводит к потере материала катализатора[15].

Промышленное использование

Файл:Heterrogenous catalysis across scales.png
Схематичное изображение гетерогенной каталитической системы от субнанометрового до промышленного масштаба.

В промышленности необходимо учитывать многие конструкционные параметры, включая конструкцию реактора и катализатора, в различных масштабах: от субнанометров до десятков метров. Традиционные реакторы с гетерогенным катализом включают реакторы периодического действия, непрерывного действия и реакторы с псевдоожиженным слоем, в то время как более современные установки включают реакторы с неподвижным слоем, микроканальные и многофункциональные реакторы[6]. Другие важные элементы, которые следует учитывать, являются размеры реактора, площадь поверхности, тип катализатора, носитель катализатора, а также рабочие условия реактора, такие как температура, давление и концентрации реагентов.

Некоторые крупномасштабные промышленные процессы с использованием гетерогенных катализаторов перечислены ниже[4].

Процесс Реагенты и продукт Катализатор Комментарий
Синтез серной кислоты (контактный процесс) <chem>2SO2 + O2 -> 2SO3</chem> оксиды ванадия Гидратация SO3 дает H2SO4
Синтез аммиака (процесс Габера-Боша) <chem>N2 + 3H2 -> 2NH3</chem> оксиды железа на оксиде алюминия (Al2O3) Потребляет 1% мирового промышленного энергетического бюджета[2]
Синтез азотной кислоты (процесс Оствальда) <chem>NH3 + 2O2 -> HNO3 + H2O</chem> неподдерживаемая Pt-Rh сетка Прямые маршруты от N2 неэкономичны
Производство водорода методом парового риформинга <chem>CH4 + 2H2O -> 4H2 + CO2</chem> Никель или K2O Активно искали более экологичные пути получения H2 путём расщепления воды
Синтез этиленоксида <chem>2C2H4 + O2 -> 2C2H4O</chem> серебро на глинозёме, со многими промотерамиШаблон:Уточнить Плохо применим к другим алкенам
Синтез цианистого водорода <chem>2CH4 + 3O2 + 2NH3 -> 2HCN + 6H2O</chem> Pt-Rh Родственный процесс аммоксидирования превращает углеводороды в нитрилы.
Полимеризация олефинов Полимеризация Циглера-Натта <chem>nCH2=CH(CH3) -> [-CH2-CH(CH3)-]n</chem> TiCl3 на MgCl2 Существует множество вариаций, в том числе несколько однородных примеров.
Десульфурация нефти (гидрообессеривание) <chem>2H2 + R2S -> 2RH + H2S</chem> Mo - Co на глиноземе Производит углеводороды с низким содержанием серы, сера извлекается по процессу Клауса.
Файл:Haber-Bosch-En.svg
Блок-схема процесса, иллюстрирующая использование катализа в синтезе аммиака (NH3)

Другие примеры

Примечания