Русская Википедия:Гиперзаряд

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Ароматы и квантовые числа

Гиперзаря́д (обозначается Шаблон:Math) частицы — сумма барионного числа Шаблон:Math и ароматов: странности Шаблон:Math, очарования Шаблон:Math, прелести Шаблон:Math и истинности Шаблон:Math[1]:

<math>(1) \qquad Y = B + S + C + B^\prime + T.</math>

Изначально в определение гиперзаряда был включён только один аромат (странность), поскольку концепция гиперзаряда была введена в середине 1950-х годов[2][3][4], когда другие ароматы ещё не были открыты. Не следует путать гиперзаряд, связанный с сильным взаимодействием, со слабым гиперзарядом, который играет аналогичную роль в электрослабом взаимодействии.

Электрический заряд и гиперзаряд

Формула Гелл-Манна — Нисидзимы связывает гиперзаряд частицы с её электрическим зарядом и проекцией изоспина:

<math>(2) \qquad Q = I_z + {1 \over 2} Y,</math>

где Шаблон:Math — третья компонента изоспина, а Шаблон:Math — электрический заряд. Этот закон позволяет, в свою очередь, выразить гиперзаряд через проекцию изоспина и электрический заряд:

<math>(3) \qquad Y = 2(Q - I_z). </math>

Изоспин создает мультиплеты частиц с одинаковым гиперзарядом, равным удвоенному среднему заряду по мультиплету:

<math>(4) \qquad Y = 2 \bar Q,</math>

что легко выводится из (3), поскольку гиперзаряд одинаков для всех членов мультиплета, а среднее значение Шаблон:Math по мультиплету равно нулю. Например, на рисунке квадруплет Δ-барионов с гиперзарядом +1 имеет средний заряд (−1 + 0 + 1 + 2)/4 = +1/2.

Файл:Baryondekuplett.svg
Декуплет барионов.

Примеры:

  • нуклонная группа (протон+нейтрон) имеет средний заряд (1+0)/2 = +1/2, так что оба они имеют гиперзаряд Шаблон:Math (барионное число Шаблон:Math, значения ароматов равны 0). Из формулы Гелл-Манна — Нисидзимы получаем, что протон имеет проекцию изоспина, равную +1 − 1/2 = +1/2, а нейтрон имеет проекцию изоспина, равную 0 − 1/2 = −1/2.
  • Это верно и для кварков: для u-кварка, у которого Шаблон:Math и Шаблон:Math, мы получаем гиперзаряд 1/3, который соответствует барионному числу (поскольку для создания бариона нужно 3 кварка, то кварки имеют барионное число ±1/3).
  • Для s-кварка (странного кварка) с зарядом −1/3, барионным числом 1/3 и странностью −1 гиперзаряд равен Шаблон:Math, откуда проекция изоспина Шаблон:Math.

Гиперзаряды d- и u-кварков равны +1/3, а гиперзаряды остальных кварков равны их удвоенному электрическому заряду, поскольку для них изоспин равен нулю: s- и b-кварки («нижние») имеют гиперзаряд −2/3, а c- и t-кварки («верхние») — +4/3.

Практическое устаревание идеи

Гиперзаряд — концепция, разработанная в середине XX века, чтобы организовать группы частиц в «зоопарке элементарных частиц» и описать законы сохранения, основанные на трансформациях частиц.

Обозначим через Шаблон:Math, Шаблон:Math, Шаблон:Math, Шаблон:Math, Шаблон:Math и Шаблон:Math количества соответствующих кварков в системе (причем в эти числа кварк и антикварк дают вклады +1 и −1, соответственно). Учитывая, что ароматы кварков имеют знаки, совпадающие со знаком их электрических зарядов (Шаблон:Math), и что барионное число системы Шаблон:Math, можно выразить гиперзаряд системы через её кварковый состав:

<math>(5) \qquad Y = {1 \over 3} (d + u - 2s - 2b + 4c + 4t).</math>

В современных описаниях адронного взаимодействия удобнее и нагляднее чертить диаграммы Фейнмана, которые прослеживают через сочетание отдельных кварков взаимодействия барионов и мезонов, чем считать гиперзаряды частиц. Слабый гиперзаряд, однако, всё ещё используется в различных теориях электрослабого взаимодействия.

См. также

Примечания

Шаблон:Примечания

Шаблон:Нет ссылок

  1. Истинность включена лишь формально, её можно не учитывать из-за очень короткого времени жизни t-кварка, который распадается на менее массивные кварки до того, как проходит достаточное время, чтобы он мог взаимодействовать с окружающими кварками через сильное взаимодействие
  2. Шаблон:Статья
  3. Шаблон:Статья
  4. Шаблон:Статья