Русская Википедия:Гравитационная задача N тел

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Гравитацио́нная зада́ча N тел является классической проблемой небесной механики и гравитационной динамики Ньютона.

Она формулируется следующим образом.

В пустоте находится N материальных точек, массы которых известны {mi}. Пусть попарное взаимодействие точек подчинено закону тяготения Ньютона, и пусть силы гравитации аддитивны. Пусть известны начальные на момент времени t=0 положения и скорости каждой точки ri|t =0 = ri0, vi|t =0 = vi0. Требуется найти положения точек для всех последующих моментов времени.

Математическая формулировка гравитационной задачи N тел

Эволюция системы N гравитирующих тел (материальных точек) описывается следующей системой уравнений:

<math>

\frac{d{\mathbf r}_i}{dt} = {\mathbf v}_i, </math>

<math>

\frac{d{\mathbf v}_i}{dt} = \sum\limits_{j \neq i}^N G \, m_j \, \frac{{\mathbf r}_j - {\mathbf r}_i}{\left|{\mathbf r}_j - {\mathbf r}_i\right|^{3}}, </math>

где <math>m_i,\, {\mathbf r}_i, \, {\mathbf v}_i</math> — масса, радиус-вектор и скорость i-го тела соответственно (i изменяется от 1 до N), G — гравитационная постоянная. Массы тел, а также положения и скорости в начальный момент времени считаются известными. Необходимо найти положения и скорости всех частиц в произвольный момент времени.

Аналитическое решение

Файл:2bodies.png
Траектории двух тел разной массы, пребывающих в гравитационном взаимодействии друг с другом
Файл:3bodies.png
Приблизительные траектории трёх одинаковых тел, находившихся в вершинах неравнобедренного треугольника и обладавших нулевыми начальными скоростями

Случай уединённой точки <math>N=1</math> не является предметом рассмотрения гравитационной динамики. Поведение такой точки описывается первым законом Ньютона. Гравитационное взаимодействие — это как минимум парный акт.

Решением задачи двух тел <math>N=2</math> является барицентрическая системная орбита (не путать с полевой центральной орбитой Кеплера). В полном соответствии с исходной постановкой задачи, решение задачи двух тел совершенно нечувствительно к нумерации точек и соотношению их масс. Полевая центральная орбита Кеплера возникает предельным переходом <math>\frac{m_1}{m_2}\rightarrow0</math>. При этом теряется равноправие точек: <math>m_2</math> принимается абсолютно неподвижным тяготеющим центром, а первая точка «теряет» массу, — параметр <math>m_1</math> выпадает из динамических уравнений. В математическом смысле возникающая система дегенеративна, так как количество уравнений и параметров уменьшается в два раза. Поэтому обратная асимптотика становится невозможной: из законов Кеплера не следует закон тяготения Ньютона. (Следует учесть, что массы вообще не упоминаются в законах Кеплера.)

Для задачи трёх тел в 1912 году Карлом Зундманом было получено общее аналитическое решение в виде рядов. Хотя эти ряды и сходятся для любого момента времени и с любыми начальными условиями, но сходятся они крайне медленно[1]. Из-за крайне медленной сходимости практическое использование рядов Зундмана невозможно[2].

Также для задачи трёх тел Генрихом Брунсом и Анри Пуанкаре было показано, что её общее решение нельзя выразить через алгебраические или через однозначные трансцендентные функции координат и скоростей[2]. Кроме того, известно только 5 точных решений задачи трёх тел для специальных начальных скоростей и координат объектов.

На данный момент в общем виде задача <math>N</math> тел для <math>N>3</math> может быть решена только численно, причём для <math>N=3</math> ряды Зундмана даже при современномШаблон:Когда уровне развития вычислительной техники использовать практически невозможно.

Численные методы

С появлением компьютерной техники появилась реальная возможность изучать свойства систем гравитирующих тел путём численного решения системы уравнений движения. Для этого используются, например, метод Рунге — Кутты (четвёртого или более высокого порядка).

Численные методы сталкиваются с теми же проблемами, что и аналитические — при тесных сближениях тел необходимо уменьшать шаг интегрирования, а при этом быстро растут численные ошибки. Кроме того, при «прямом» интегрировании число вычислений силы для каждого шага растёт с ростом числа тел приблизительно как <math>N^2</math>, что делает практически невозможным моделирование систем, состоящих из десятков и сотен тысяч тел.

Для решения этой проблемы применяют следующие алгоритмы (или их комбинации):

  • Схема Ахмада-Коэна — предлагает разделить силу, действующую на каждое тело, на 2 части — иррегулярную (от близких тел — «соседей») и регулярную (от более далёких тел). Соответственно, регулярную силу можно перевычислять с гораздо большим шагом, чем иррегулярную.
  • «Древесный алгоритм» (Treecode), впервые реализованный Джошуа Барнесом[3].

Интегралы движения

Несмотря на кажущуюся простоту формул, решения в виде конечных аналитических выражений для данной задачи в общем виде для <math>N\ge 3</math> не существует. Как показал Генрих Брунс, задача многих тел имеет только 10 независимых алгебраических интегралов движения, которые были найдены в XVIII веке и которых недостаточно для интегрирования задачи трёх и более тел[4][5]. Свои обобщения этой теоремы предложили Пенлеве и Пуанкаре. Пенлеве удалось отказаться от требования алгебраичности зависимости от координат, Пуанкаре же высказал гипотезу о том, что не существует нового однозначного интеграла (все классические интегралы, кроме интеграла энергии, являются однозначными функциями). Это последнее утверждение, по всей видимости, до сих пор строго не доказано в столь общей формулировке.

В 1971 году В. М. Алексеев так прокомментировал соответствующий пассаж в «Небесной механике» Пуанкаре[6]:

Шаблон:Начало цитаты Несуществование однозначного аналитического интеграла в задаче трёх тел до сих пор не доказано с полной строгостью… Первое аккуратное доказательство неинтегрируемости гамильтоновой системы достаточно общего вида принадлежит Зигелю[7]. Интересно отметить, что неаналитические интегралы в рассматриваемых задачах возможны; их существование вытекает из одной теоремы Колмогорова[8][9]. Напротив, в случае, когда число переменных более двух, вероятнее всего, невозможен даже непрерывный интеграл[10]. Шаблон:Конец цитаты

См. также

Примечания

Шаблон:Примечания

Литература

  • James Binney, Scott Tremaine. Galactic Dynamics, 1988, ISBN 0-69-108445-9.

Ссылки

Внешние ссылки

  1. К. Л. Зигель. Лекции по небесной механике. Шаблон:Wayback — М.: ИЛ, 1959.
  2. 2,0 2,1 Шаблон:Статья (копия статьи в Архиве Интернета)
  3. Шаблон:Cite web
  4. Bruns H. Ueber die Integrale der Vielkoerper-Problems // Acta math. Bd. 11 (1887), p. 25—96.
  5. Уитекер. Аналитическая динамика.
  6. В. В. Козлов. Симметрии, топология и резонансы в гамильтоновой механике. — Ижевск, 1995.
  7. Математика. — 1961. — № 5, вып. 2. — С. 129—155.
  8. Колмогоров А. Н. // ДАН, 1954, 48, № 4, 527—530
  9. Арнольд В. И. // УМН, 1963, 18 , № 5—6
  10. Арнольд В. И. // ДАН, 1964, 154, № 1, 9—12.

Шаблон:Выбор языка Шаблон:Орбиты Шаблон:Небесная механика