Русская Википедия:Граф Дюрера

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Dürer Melancholia I.jpg
«Меланхолия» Альбрехта Дюрера

Граф Дюрера — неориентированный кубический граф с 12 вершинами и 18 рёбрами. Граф назван именем Альбрехта Дюрера, чья гравюра «Меланхолия» (1514) содержала изображение так называемого многогранника Дюрера — выпуклого многогранника, имеющего граф Дюрера в качестве Шаблон:Не переведено 5. Многогранник Дюрера является одним из четырёх возможных хорошо укрытых простых выпуклых многогранников.

Многогранник Дюрера

Шаблон:Main Многогранник Дюрера комбинаторно эквивалентен кубу с двумя усечёнными противоположными вершинами[1], хотя на рисунке Дюрера он, скорее, нарисован как усечённый ромбоэдр или трёхгранный усечённый трапецоидШаблон:Sfn. Точные геометрические свойства нарисованного Дюрером многогранника служат предметом академических споров, в которых предполагаются различные гипотетические значения (острых) углов от 72° до 82°Шаблон:Sfn.

Свойства графа

Шаблон:Граф Граф Дюрера является графом, образованным вершинами и рёбрами многогранника Дюрера. Граф является кубическим с обхватом 3 и диаметром 4. Поскольку граф является скелетом многогранника Дюрера, он может быть получен путём применения преобразования треугольник-звезда противоположных вершин графа куба или как обобщённый граф Петерсена <math>G(6,2)</math>. Как и любой другой граф выпуклого многогранника, граф Дюрера является вершинно 3-связным простым планарным графом.

Граф Дюрера является хорошо укрытым, что означает, что все его наибольшие независимые множества имеют одно и то же число вершин — четыре. Граф является одним из хорошо укрытых кубических многогранных графов и одним из семи хорошо укрытых 3-связных кубических графов. Другими тремя хорошо укрытыми простыми выпуклыми многогранниками являются тетраэдр, треугольная призма и пятиугольная призмаШаблон:SfnШаблон:Sfn.

Граф Дюрера является гамильтоновым с LCF-обозначением [-4,5,2,-4,-2,5;-][2]. Точнее, граф имеет ровно шесть гамильтоновых циклов, каждая пара которых может быть отображена в любую другую симметриями графаШаблон:Sfnp.

Симметрии

Группа автоморфизмов как графа Дюрера, так и многогранника Дюрера (в виде усечённого куба или в форме, представленной Дюрером) изоморфна диэдрической группе <math>D_6</math> порядка 12.

Галерея

Примечания

Шаблон:Примечания

Литература

  1. Шаблон:MathWorld
  2. Кастанья и Принс (Шаблон:Harvtxt) приписывают доказательство гамильтоновости класса обобщённых графов Петерсона, в который входит граф Дюрера, тезисам диссертации 1968 года Робертсона (G. N. Robertson) из университета Ватерлоо.