Русская Википедия:Двухкомпонентная система

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Двухкомпоне́нтная систе́ма (Шаблон:Lang-en) — молекулярно-биологический механизм, позволяющий клеткам ощущать и отвечать на изменения различных параметров окружающей среды[1]. Как правило, двухкомпонентная система состоит из мембраносвязанной Шаблон:Нп5, которая ощущает изменения окружающей среды, и соответствующего Шаблон:Нп5, который обеспечивает клеточный ответ, главным образом за счёт дифференциальной экспрессии генов-мишеней[2]. Хотя двухкомпонентные системы обнаружены у представителей всех трёх доменов жизни, наиболее часто они встречаются у бактерий, особенно грамотрицательных бактерий и цианобактерий. Гены, кодирующие гистидинкиназы и регуляторы ответа, составляют два самых крупных Шаблон:Нп5 у бактерий[3]. Гораздо реже двухкомпонентные системы встречаются у архей и эукариот; тем не менее, они всё же описаны у дрожжей и плесневых грибов, слизевиков и обычны для растений[1], но полностью отсутствуют у Metazoa[3].

Механизм

Двухкомпонентные системы осуществляют биологическую передачу сигнала посредством фосфорилирования регулятора ответа (РО) гистидинкиназой (ГК). Гистидинкиназы, как правило, являются гомодимерными трансмембранными белками, которые имеют гистидинсодержащий фосфотрансферазный домен и АТФ-связывающий домен, хотя описаны необычные семейства ГК, не являющихся гомодимерными[4]. Регуляторы ответа могут состоять из одного домена-получателя, но обычно являются мультидоменными белками, содержащими домен-получатель и эффекторный домен, часто обладающий ДНК-связывающей активностью[3]. Когда ГК ощущает изменение во внеклеточной среде, она осуществляет реакцию Шаблон:Нп5, перенося Шаблон:Нп5 с АТФ на специфический остаток гистидина. Соответствующий РО далее катализирует реакцию переноса этой фосфорильной группы от ГК на остаток аспартата в своём домене-получателе[5][6]. В результате этой реакции РО претерпевает конформационное изменение, которое активирует его эффекторный домен, а он, в свою очередь, запускает клеточный ответ на сигнал, активируя или репрессируя экспрессию генов-мишеней[3].

Многие ГК бифункциональны и обладают фосфатазной активностью, направленной на соответствующие РО, поэтому сигнал на выходе отражает баланс между киназной и фосфатазной активностью ГК. Многие РО также способны к аутодефосфорилированию[7], кроме того, относительно лабильный фосфоаспартат может быть гидролизован неферментативно. Общий уровень фосфорилирования РО в конечном счёте контролирует его активность[1][8].

Некоторые ГК являются гибридами и содержат внутренний домен-получатель. В этом случае ГК аутофосфорилируется и далее переносит фосфорильную группу на свой внутренний домен-получатель, а не на отдельный белок-регулятор ответа. Далее фосфорильная группа переносится на Шаблон:Нп5 и от неё на конечный РО, который и запускает необходимый клеточный ответ[9][10]. Такая система называется фосфореле (Шаблон:Lang-en). Почти 25 % бактериальных ГК и большинство эукариотических ГК относятся к гибридному типу[3].

Функции

Двухкомпонентные системы позволяют бактерии ощущать, отвечать и адаптироваться к разнообразным изменениям окружающей среды и стрессовым воздействиям[11]. Двухкомпонентные системы могут реагировать на разнообразные стимулы: питательные вещества, оксилительно-восстановительный статус клетки, изменения осмолярности, сигналы кворума, антибиотики, температура, хемоаттрактанты, pH и другие[12][13]. Например, у Escherichia coli осморегуляторная Шаблон:Нп5 контролирует дифференциальную экспрессию поринов внешней мембраны OmpF и OmpC[14]. Сенсорная киназа KdpD регулирует оперон kdpFABC, ответственный за транспорт ионов калия у таких бактерий, как E. coli и Clostridium acetobutylicum[15]. Цитоплазматический участок KdpD может быть сенсором тургорного давления[16].

Среднее количество двухгибридных систем в бактериальном геноме оценивается как 30[17] (1—2 % генома[18]). Некоторые бактерии, обычно являющиеся эндосимбионтами или патогенами, полностью лишены двухкомпонентных систем, а некоторые бактерии имеют свыше 200 таких систем[19][20]. Такие системы требуют наличия общей системы регуляции, предотвращающей перекрёст между ними, который довольно редок в условиях in vivo[21].

Эволюция

Количество двухкомпонентных систем, закодированных в бактериальном геноме, тесно связано с его размером, а также экологической нишей, занимаемой бактерией. У обитателей ниш, в которых часто меняются условия окружающей среды, имеется больше генов, кодирующих ГК и РО[3][22]. Новые двухкомпонентные системы могут образовываться путём дупликации генов и передаваться при горизонтальном переносе генов, причём скорости обоих процессов значительно варьируют у разных видов бактерий[23]. В большинстве случаев ГК и соответствующие им РО кодируются одним опероном[3]. В отличие от дупликации генов, горизонтальный перенос генов в большей степени способствует сохранению оперонной организации[23].

У эукариот

Двухкомпонентные системы среди эукариот редки. Они встречаются у дрожжей, нитчатых грибов, слизевиков, довольно обычны для растений, однако полностью отсутствуют у настоящих многоклеточных животных (Metazoa)[3]. По-видимому, эукариоты получили двухкомпонентные системы через горизонтальный перенос генов, нередко от эндосимбиотических органелл, и их ГК обычно относятся к гибридному типу. Например, у дрожжей Candida albicans ядерные гены, кодирующие компоненты двухкомпонентных систем, имеют митохондриальное происхождение[24]. Двухкомпонентные системы успешно интегрированы в сигнальные пути растений, контролирующие развитие, и, скорее всего, произошли от хлоропластов путём горизонтального переноса генов[3]. Например, у Arabidopsis thaliana ген, кодирующий Шаблон:Нп5 (Шаблон:Lang-en), находится в ядерном геноме, но произошёл из генома хлоропластов. CSK обеспечивает работу регуляторной системы, связывающей фотосинтез и экспрессию генов хлоропластов; это наблюдение было описано как ключевое предсказание гипотезы CoRR, которая объясняет сохранение генов у эндосимбиотических органелл[25][26].

Неясно, почему двухкомпонентные системы редки у эукариот, у которых многие функции двухкомпонентных систем выполняются сигнальными системами, основанными на сериновых, треониновых и тирозиновых киназах. Одно из предложенных объяснений заключается в том, что фосфоаспартат слишком нестабилен, а для передачи сигнала в более сложных эукариотических клетках необходимы более стабильные соединения.[3]. Стоит отметить, что перекрёст между сигнальными путями эукариотических клеток — обычное явление, при этом у бактериальных двухкомпонентных систем он встречается редко[27].

Биоинформатика

Благодаря схожести последовательностей и оперонной структуре многие двухкомпонентные системы, в особенности, ГК, относительно просто идентифицировать с помощью биоинформатического анализа. Эукариотические же киназы идентифицировать довольно просто, однако найти их субстраты — нетривиальная задача[3]. База данных двухкомпонентных систем прокариот — P2CS — хранит информацию и классифицирует известные двухкомпонентные системы. Для некоторых случаев база данных хранит предсказания о предполагаемых партнёрах ГК и РО[28][29].

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Добротная статья