Русская Википедия:Душа (дифференциальная геометрия)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Другие значения Душа риманова многообразия <math>(M,g)</math> — компактное тотально выпуклое тотально геодезическое подмногообразие, являющееся его деформационным ретрактом.

Обычно предполагается, что <math>(M,g)</math> — полное связное риманово многообразие с секционной кривизной K ≥ 0.

Примеры

  • У параболоида M = {(x,y,z) : z = x2 + y2}, начало координат (0,0,0) — душа M. При этом не любая точка x, принадлежащая M, является его душой, так как могут существовать геодезические петли, начинающиеся в точке x.
  • У бесконечного цилиндра M = {(x,y,z) : x2 + y2 = 1} любая «горизонтальная» окружность {(x,y,z) : x2 + y2 = 1} с фиксированной z является душой M.

История

Термин душа введён Шаблон:Нп1 и Шаблон:Нп1 в 1972 году[1] в статье, где они, в частности, доказали теорему о душе. Теорема обобщала более раннюю теорему Громола и Мейера[2]. В той же статье Чигером и Громолом сформулирована гипотеза о душе. Короткое доказательство этой гипотезы было дано Григорием Перельманом[3] в 1994 году.

Свойства

Ниже предполагаем, что <math>(M,g)</math> — это полное связное риманово многообразие с секционной кривизной K ≥ 0.

Связанные открытые вопросы

  • Гипотеза о двойной душе утверждает[5], что любое компактное многообразие неотрицательной секционной кривизны можно покрыть двумя расслоениями на диски.

Примечания

Шаблон:Примечания