Русская Википедия:Евдокс Книдский

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Тёзки Шаблон:Учёный Евдо́кс Кни́дский (в части источников: Эвдокс, Шаблон:Lang-grc, Шаблон:Lang-lat; ок. 408 год до н. э. — ок. 355 год до н. э.) — древнегреческий Шаблон:Математик, Шаблон:Механик и Шаблон:Астроном. Занимался также врачеванием, философией и музыкой; был известен как оратор и законовед.

Неоднократно упоминается у античных авторов. Сочинения самого Евдокса до нас не дошли, но его математические открытия изложены в «Началах Евклида». Среди его учеников были Каллипп, Менехм и Динострат.

Научная школа Евдокса сыграла большую роль в развитии античной астрономии и математики. Историки науки относят Евдокса к числу основоположников интегрального исчисления и теоретической астрономии[1]. В частности, Евдокс создал теорию геометрических величин (античный аналог вещественных чисел), метод исчерпывания (прообраз анализа криволинейных фигур) и первую теоретическую модель движения небесных тел, переработанный вариант которой был позднее изложен в «Альмагесте» Птолемея.

В честь Евдокса названы:

Биография

О жизни Евдокса известно немного. Родился в Книде, на юго-западе Малой Азии. Учился медицине у Филистиона в Сицилии, потом математике (у пифагорейца Архита в Италии), далее присоединился к школе Платона в Афинах[2]. Около года провёл в Египте, изучал астрономию в Гелиополе. Позднее Евдокс переселился в город Кизик на Мраморном море, основал там собственную математико-астрономическую школу, читал лекции по философии, астрономии и метеорологииШаблон:Sfn.

Около 368 года до н. э. Евдокс вместе с частью учеников вернулся в Афины. Умер в родном Книде, окружённый славой и почётом. Диоген Лаэртский сообщает некоторые подробности: скончался Евдокс на 53-м году жизни, были у него три дочери и сын по имени АристагорШаблон:Sfn.

Астрономия

Файл:Eudoxus planets3.PNG
Система из четырёх концентрических сфер, использовавшаяся для моделирования движения планет в теории Евдокса. Цифрами обозначены сферы, отвечавшие за суточное вращение небосвода (1), за движение вдоль эклиптики (2), за попятные движения планеты (3 и 4). T — Земля, пунктирная линия изображает эклиптику (экватор второй сферы)

Евдокса можно считать создателем античной теоретической астрономии как самостоятельной науки. В Кизике им была построена обсерватория, в которой впервые в Элладе велись систематические наблюдения за небом. Школа Евдокса выпустила первый в Греции звёздный каталогШаблон:Sfn. Гиппарх упоминал названия двух астрономических трудов Евдокса: «Явления» и «Зеркало»[3].

Евдокс первым решил задачу Платона, предложившего астрономам построить кинематическую модель, в которой видимые движения Солнца, Луны и планет получались бы как результат комбинации равномерных круговых движений. Модель Евдокса состояла из 27 взаимосвязанных сфер, вращающихся вокруг Земли (теория гомоцентрических сфер). Согласие этой модели с наблюдениями было для того времени неплохим; исключением было движение Марса, который неравномерно движется по орбите, далёкой от круговой, и её крайне трудно приблизить равномерным вращением сфер.

Теорию Евдокса с математической точки зрения усовершенствовал Каллипп, у которого число сфер возросло до 34. Дальнейшее усовершенствование теории было связано с Аристотелем, который разработал механизм передачи вращения от наружных сфер к внутренним; при этом число сфер возросло до 56. В дальнейшем Гиппарх и Клавдий Птолемей отказались от теории гомоцентрических сфер в пользу теории эпициклов, которая позволяет более точно смоделировать неравномерность видимого движения небесных тел.

Евдокс считал Землю шарообразным телом, ему приписывается одна из первых оценок длины земного меридиана в Шаблон:Число стадиев[4], или примерно 70 000 км. Евдокс пытался определить сравнительную величину небесных тел. Он знал, что Солнце больше Луны, но ошибочно полагал, что отношение их диаметров равно 9:1[5]. Ему же приписывают определение угла между эклиптикой и небесным экватором, то есть, с современной точки зрения, наклона земной оси к плоскости земной орбиты, равного 24°[6]. Евдоксу приписывают также изобретение горизонтальных солнечных часов.

Евдокс был знаком с вавилонской астрологией, относился к ней презрительно и чётко отделял от астрономии: «не следует доверять ни в малейшей степени халдеям и их предсказаниям и утверждениям о жизни человека, основанным на дне его рождения»Шаблон:Sfn.Шаблон:-

Математика

Евдокс получил фундаментальные результаты в различных областях математики. Например, при разработке своей астрономической модели он существенно продвинул сферическую геометрию[5]. Однако особенно большое значение имели созданные им две классические теории.

Общая теория отношений

Числовые системы древних греков ограничивались натуральными числами и их отношениями (дробями, рациональными числами). Однако ещё пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, то есть отношение их длин не может быть представлено рациональным числом. Стало понятно, что пифагорейская арифметика должна быть каким-то образом расширена с тем, чтобы включать все результаты измерений. Это и сделал Евдокс. Его теория дошла до нас в изложении Евклида (Начала, книга V)[7].

В дополнение к числам Евдокс ввёл более широкое понятие геометрической величины, то есть длины отрезка, площади или объёма. С современной точки зрения, число при таком подходе есть отношение двух однородных величин — например, исследуемой и единичного эталона[8]. Этот подход снимает проблему несоизмеримости. По существу, теория отношений Евдокса — это геометрическая модель вещественных чисел. Следует, однако, подчеркнуть, что Евдокс остался верен прежней традиции — он не рассматривал такое отношение как число; из-за этого в «Началах» многие теоремы о свойствах чисел затем заново доказываются для величинШаблон:Sfn. Признание иррациональностей как особого вида чисел произошло много позднее, под влиянием индийских и исламских математических школШаблон:Sfn.

В начале своего построения Евдокс дал аксиоматику для сравнения величин. Все однородные величины сравнимы между собой, и для них определены две операции: отделение части и соединение (взятие кратного). Однородность величин сформулирована в виде аксиомы, известной также как аксиома Архимеда: «Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга»[7]. Сам Архимед при изложении этой аксиомы сослался на ЕвдоксаШаблон:Sfn.

Далее Евдокс рассматривает отношения между величинами и определяет для них равенствоШаблон:Sfn:

Говорят, что величины находятся в том же отношении: первая ко второй и третья к четвёртой, если равнократные первой и третьей одновременно больше, или одновременно равны, или одновременно меньше равнократных второй и четвёртой, каждая каждой при какой бы то ни было кратности, если взять их в соответственном порядке.

В переводе на современный математический язык это означает, что отношения <math>a : b</math> и <math>c : d</math> равны, если для любых натуральных <math>m, n</math> выполняется одно из трёх соотношений:

  • либо <math>ma < nb</math> и <math>mc < nd</math>;
  • либо <math>ma = nb</math> и <math>mc = nd</math>;
  • либо <math>ma > nb</math> и <math>mc > nd</math>.

Фактически описанное свойство означает, что между <math>a : b</math> и <math>c : d</math> нельзя вставить рациональное число. До Евдокса использовалось другое определение, через равенство последовательных вычитаний[9]; это определение эквивалентно определению Евдокса, но сложнее в использовании. Современным языком это можно выразить как равенство цепных дробей для отношений <math>a : b</math> и <math>c : d</math>[10].

Далее Евдокс аккуратно выводит свойства отношений: транзитивность, упорядоченность и т. д.

Классическая теория Дедекинда для построения вещественных чисел поразительно похожа на изложение Евдокса. Соответствие между ними устанавливается так: пусть заданы две величины Евдокса <math>a, b</math>; дробь <math>m/n</math> отнесём к классу <math>A</math>, если <math>ma > nb</math>, иначе — к классу <math>B</math>. Тогда классы <math>A</math> и <math>B</math> определяют дедекиндово сечение поля рациональных чисел <math>\mathbb{Q}</math>. Осталось отождествить отношение по Евдоксу <math>b : a</math> с этим дедекиндовым числомШаблон:Sfn.

Отметим, однако, что у Евдокса отсутствует аналог аксиомы непрерывности, и ниоткуда не следует, что всякое сечение <math>\mathbb{Q}</math> определяет вещественное число[11].

Метод исчерпывания

Шаблон:Main Это своего рода античный анализ криволинейных фигур. Обоснование этого метода не опирается на актуальные бесконечно малые, но неявно включает понятие предела. Название «метод исчерпывания» предложил в 1647 году Грегуар де Сен-Венсан, в античные времена у метода не было специального названия. Евклид изложил теорию метода исчерпывания в X книге «Начал», а в XII книге применил для доказательства нескольких теорем.

Файл:Archimedes pi.svg
Вычисление площади круга методом исчерпывания

Метод заключался в следующем: для нахождения площади (или объёма) некоторой фигуры в эту фигуру вписывалась монотонная последовательность других фигур и доказывалось, что их площади (объёмы) неограниченно приближаются к площади (объёму) искомой фигуры. Затем вычислялся предел последовательности площадей (объёмов), для чего выдвигалась гипотеза, что он равен некоторому A и доказывалось, что обратное приводит к противоречию. Поскольку общей теории пределов не было (греки избегали понятия бесконечности), все эти шаги, включая обоснование единственности предела, повторялись для каждой задачиШаблон:Sfn.

В такой форме метод исчерпывания хорошо вписывался в строго дедуктивное построение античной математики, однако имел несколько существенных недостатков. Во-первых, он был исключительно громоздким. Во-вторых, не было никакого общего метода для вычисления предельного значения A; Архимед, например, нередко выводил его из механических соображений или просто интуитивно угадывал. Наконец, этот метод не пригоден для нахождения площадей бесконечных фигур[12]Шаблон:Sfn.

С помощью метода исчерпывания Евдокс строго доказал ряд уже известных в те годы открытий (площадь круга, объём пирамиды и конуса)[12].

Наиболее плодотворным этот метод стал в руках выдающегося последователя Евдокса, Архимеда, который смог его значительно усовершенствовать и виртуозно применял для многих новых открытий[12]. В средние века европейские математики также применяли метод исчерпывания, пока он не был вытеснен сначала более мощным и технологичным методом неделимых, а затем — математическим анализом.

См. также

Примечания

Шаблон:Примечания

Литература

Ссылки

Внешние ссылки

  1. Шаблон:Книга
  2. Шаблон:Книга
  3. Шаблон:Книга
  4. James Oliver Thomson. History of ancient geography. Biblo & Tannen Publishers, Cambridge: Cambridge University Press, 1948, ISBN 0-8196-0143-8, p. 116.
  5. 5,0 5,1 Ошибка цитирования Неверный тег <ref>; для сносок BASH306 не указан текст
  6. Andrew Gregory. Eudoxus, Callippus and the Astronomy of the Timaeus Шаблон:Wayback, p. 23: «We do not know what value for the inclination of the ecliptic was used by Eudoxus and Callippus, though 24°, 1/15 of a circle, is commonly supposed».
  7. 7,0 7,1 Ошибка цитирования Неверный тег <ref>; для сносок IM96 не указан текст
  8. Именно так определяли общее понятие числа Ньютон и другие математики Нового времени.
  9. Топика Аристотеля
  10. Von Fritz, Kurt. «The discovery of incommensurability by Hippasus of Metapontum.» Annals of mathematics (1945): 242—264.
  11. Ошибка цитирования Неверный тег <ref>; для сносок IM97 не указан текст
  12. 12,0 12,1 12,2 Ошибка цитирования Неверный тег <ref>; для сносок IM101 не указан текст

Шаблон:Выбор языка Шаблон:Древнегреческая астрономия Шаблон:Механики Шаблон:Добротная статья