Русская Википедия:Задача Кобона о треугольниках
Зада́ча Кобо́на о треуго́льниках — нерешённая задача комбинаторной геометрии, сформулированная Шаблон:Нихонго, известным также как Кобон. В задаче спрашивается, каково максимальное число N(k) неперекрывающихся треугольников, стороны которых принадлежат конфигурации k прямых. Вариант задачи рассматривается в проективной плоскости, а не в евклидовой плоскости, и в этом случае требуется, чтобы треугольники не пересекались другими прямыми конфигурацииШаблон:Sfn.
Верхние границы
Сабуро Тамура доказал, что наибольшее целое, не превосходящее k(k − 2)/3, даёт верхнюю границу максимального числа неперекрывающихся треугольников, получаемых из k прямых[1]. В 2007 году Иоганес Бадер и Жиль Клеман (Шаблон:Lang-de, Шаблон:Lang-fr) нашли более сильную границу, доказав, что верхняя граница Тамуры не может быть достигнута для любого k, сравнимого с 0 или 2 по модулю 6[2]. Поэтому максимальное число треугольников на единицу меньше границы Тамура для этих случаев. Совершенные решения (решение задачи Кобона, дающие максимальное число треугольников) известны для k = 3, 4, 5, 6, 7, 8, 9, 13, 15 и 17[3]. Для k = 10, 11 и 12 наилучшие известные решения на единицу меньше верхней границы.
Если дано совершенное решение с k0 прямыми, другие решения задачи Кобона о треугольниках могут быть найдены для всех значений ki, где
- <math>k_{n+1} = 2 k_n - 1,</math>
при помощи процедуры Д. Форжа и Дж. Л. Рамиреза АльфонсинаШаблон:Sfn[4]. Например, решение для k0 = 3 приводит к максимальному числу неперекрывающихся треугольников для k = 3, 5, 9, 17, 33, 65, …
k | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | OEIS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Верхняя граница Тамуры для N(k) | 1 | 2 | 5 | 8 | 11 | 16 | 21 | 26 | 33 | 40 | 47 | 56 | 65 | 74 | 85 | 96 | 107 | 120 | 133 | [5] |
Верхняя граница Клемана и Бадера | 1 | 2 | 5 | 7 | 11 | 15 | 21 | 26 | 33 | 39 | 47 | 55 | 65 | 74 | 85 | 95 | 107 | 119 | 133 | — |
Лучшие известные решения | 1 | 2 | 5 | 7 | 11 | 15 | 21 | 25 | 32 | 38 | 47 | 53 | 65 | 72 | 85 | 93 | 104 | 115 | 130 | [6] |
Примеры
-
3 прямых образуют треугольник
-
4 прямых
-
5 прямых
-
6 прямых
-
7 прямых
См. также
Примечания
Литература
- Шаблон:H Шаблон:Книга — P. 155—161. — Шаблон:DOI.
Ссылки
- Johannes Bader, "Kobon Triangles"
- Страницы с неработающими файловыми ссылками
- Русская Википедия
- Математические головоломки и досуг
- Открытые математические проблемы
- Комбинаторная геометрия
- Треугольники
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Русской Википедии