Задача Лебега состоит в отыскании плоской фигуры наименьшей площади, которая способна накрыть собой любую плоскую фигуру диаметра 1.
Замечания
Любая фигура диаметра 1 может быть накрыта фигурой постоянной ширины 1 (каждая фигура диаметра 1 — своей фигурой постоянной ширины, то есть фигура постоянной ширины зависит от фигуры диаметра 1).
Для фигур постоянной ширины диаметр совпадает с шириной.
Поэтому задача Лебега сводится к нахождению плоской фигуры наименьшей площади, которая способна накрыть собой фигуру постоянной ширины 1.
Известно, что фигура Лебега существует, но она, возможно, не единственна.
Если <math>L</math> её площадь, то известно, что
- <math>0{,}826
\approx
\tfrac\pi8 + \tfrac{\sqrt{3}}4
<L<
\tfrac2{121}\cdot \sqrt{28634\cdot\sqrt{3}-15139}+\arccos\tfrac{\sqrt{3}-1}2-\tfrac\pi3-\tfrac{109}{121}-\tfrac{82}{121\cdot\sqrt{3}}
\approx
0{,}845.</math>
Нижняя оценка доказана в[1].
Для нахождения оценки сверху достаточно представить плоскую фигуру, способную накрыть любую плоскую фигуру диаметра 1.
К таким фигурам относятся (в порядке уменьшения площади):
- Квадрат со стороной 1, его площадь равна 1;
- Правильный шестиугольник ширины 1, его площадь равна <math>\tfrac{\sqrt{3}}2\approx 0{,}866</math>;
- Самой маленькой известной на сегодня фигурой с этим свойством является правильный шестиугольник ширины 1, у которого определённым способом срезаны 3 угла. С двух углов срезаны равнобедренные треугольники, основания которых касаются окружности, вписанной в шестиугольник; третий угол срезается по двум окружностям радиуса 1, касающихся сторон на расстоянии, равном стороне такого равнобедренного треугольника.
Примечания
Шаблон:Примечания
Литература
Ссылки
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
- ↑ Ogilvy, C. S. Excursions in Geometry. New York: Dover, pp. 142—144, 1990.