Русская Википедия:Звезда
Звезда́ — массивное самосветящееся небесное тело, состоящее из газа и плазмы, в котором происходят, происходили или будут происходить термоядерные реакции. Ближайшей к Земле звездой является Солнце, другие звёзды на ночном небе выглядят как точки различной яркости, сохраняющие своё взаимное расположениеШаблон:Переход. Звёзды различаются структурой и химическим составом, а такие параметры, как радиус, масса и светимость, у разных звёзд могут отличаться на порядкиШаблон:Переход.
Самая распространённая схема классификации звёзд — по спектральным классам — основывается на их температуре и светимостиШаблон:Переход. Кроме того, среди звёзд выделяют переменные звёзды, которые меняют свой видимый блеск по различным причинам, с собственной системой классификацииШаблон:Переход. Звёзды часто образуют гравитационно-связанные системы: двойные или кратные системы, звёздные скопления и галактикиШаблон:Переход. Со временем звёзды меняют свои характеристики, так как в их недрах проходит термоядерный синтез, в результате которого меняется химический состав и масса — это явление называется эволюцией звёзд, и в зависимости от начальной массы звезды она может проходить совершенно по-разномуШаблон:Переход.
Вид звёздного неба привлекал людей с древности, с видом созвездий или отдельных светил на нём были связаны мифы и легенды разных народовШаблон:Переход, до сих пор он находит отражение в культуреШаблон:Переход. Ещё со времён первых цивилизаций астрономы составляли каталоги звёздного неба, а в XXI веке существует множество современных каталогов, содержащих различную информацию для сотен миллионов звёздШаблон:Переход.
Определение и характеристики
Общепринятого определения звезды не существует. В большинстве определений звёздами считаются массивные самосветящиеся объекты, состоящие из газа или плазмы[1], в которых хотя бы на какой-то стадии эволюции (см. нижеШаблон:Переход) в их ядрах идёт термоядерный синтез, мощность которого сопоставима с их собственной светимостью[2]Шаблон:Sfn.
Наблюдательные характеристики
Практически все звёзды наблюдаются с Земли как точечные объекты даже при использовании телескопов с большим увеличением — исключение составляет лишь малая часть звёзд, угловые размеры которых превышают разрешающую способность самых крупных инструментов, а также Солнце[3]. Всего на небе около 6000 звёзд, которые можно видеть невооружённым глазом в хороших условиях, а одновременно наблюдать можно до 3000 звёзд, расположенных над горизонтом. Взаимное положение звёзд (кроме Солнца), в отличие от Луны и других объектов Солнечной системы, меняется очень медленно: самое большое собственное движение звезды, которое зафиксировано у звезды Барнарда, составляет около 10′′ в год, а для большинства звёзд не превышает 0,05′′ в год[4]. Чтобы перемещение звёзд можно было заметить без точных измерений, нужно сравнивать вид звёздного неба с интервалом в тысячи лет. В связи с этим звёзды с древности объединяли в созвездия, а в начале XX века Международный астрономический союз утвердил деление неба на 88 созвездий и границы каждого из них[5]Шаблон:Sfn[6].
Видимая звёздная величина — мера освещённости, создаваемой звёздами. Эта величина линейно связана с логарифмом освещённости, причём чем больше освещённость, тем меньше звёздная величина. Так, например, видимая звёздная величина Солнца составляет −26,72m, а ярчайшей звездой ночного неба является Сириус с видимой звёздной величиной −1,46m. Тем не менее существует множество звёзд с гораздо большей светимостью, чем у Сириуса, но земным наблюдателям они кажутся более тусклыми из-за большой удалённости[7]Шаблон:Sfn.
Расстояния до звёзд измеряются различными методами. Расстояния до самых близких звёзд измеряют методом годичных параллаксов. Например, ближайшая к Земле звезда после Солнца — Проксима Центавра, её параллакс составляет примерно 0,76′′, следовательно она удалена на расстояние 4,2 светового года. Однако её звёздная величина составляет +11,09m, и она не видна невооружённым глазом[8]. Для измерения расстояния до более далёких звёзд используются другие методы, например, фотометрический метод: если известно, какая у звезды абсолютная светимость, то, сравнивая её с освещённостью, можно определить расстояние до звезды. Совокупность методов определения расстояний, в том числе до звёзд, образует шкалу расстояний в астрономии[9].
Спектры излучения звёзд различаются, но чаще всего они представляют собой непрерывные спектры с линиями поглощения. В некоторых случаях на фоне непрерывного спектра наблюдаются эмиссионные линии[10]. Для описания звёздных спектров часто используется понятие абсолютно чёрного тела, излучающего электромагнитные волны по закону Планка, хотя далеко не у всех звёзд спектры похожи на планковский. Температура абсолютно чёрного тела того же радиуса и светимости, что и звезда, называется эффективной температурой звезды, и, как правило, под температурой поверхности звезды подразумевается именно она. Обычно эффективные температуры звёзд лежат в диапазоне от 2—3 до 50 тысяч кельвинов[5]Шаблон:SfnШаблон:Sfn.
Физические характеристики
Параметры звёзд варьируются в очень широком диапазоне. Часто их характеристики выражаются в солнечных величинах: например, масса Солнца (Шаблон:Mo) — 1,99Шаблон:E кг, радиус Солнца (Шаблон:Ro) — 6,96Шаблон:E м, а солнечная светимость (Шаблон:Lo) — 3,85Шаблон:E Вт[5]. Иногда в качестве меры светимости используют абсолютную звёздную величину: она равна видимой звёздной величине звезды, которую бы та имела, находясь на расстоянии 10 парсек от наблюдателяШаблон:Sfn.
Обычно массы звёзд варьируются от 0,075 до 120 Шаблон:Mo, хотя иногда встречаются светила и большей массы — звезда с максимальной известной массой, R136a1, в 265 раз массивнее Солнца, а при формировании её масса составляла 320 Шаблон:Mo[1]. С высокой точностью измерить массу звезды можно только в том случае, если она принадлежит визуально-двойной системе (см. нижеШаблон:Переход), расстояние до которой известно, — тогда масса определяется на основании закона всемирного тяготения[11]. Радиусы звёзд обычно располагаются в диапазоне от Шаблон:E до Шаблон:E Шаблон:Ro, но из-за того, что они находятся слишком далеко от Земли, их угловые размеры определить непросто: для этого может использоваться, например, интерферометрия[3]. Наконец, абсолютные светимости звёзд могут составлять от Шаблон:E до Шаблон:E Шаблон:Lo[1][5]Шаблон:Sfn. Наибольшие светимости и радиусы имеют сверхгиганты[12]: например, звёзды UY Щита и Stephenson 2-18 имеют одни из самых больших известных радиусов, которые составляют около 2Шаблон:E Шаблон:Ro[13][14][15], а наибольшую светимость имеет R136a1, также самая массивная из известных звёзд[16].
Химический состав звёзд также различается. В основном они состоят из водорода и гелия, причём в молодых звёздах водород составляет 72—75 % массы, а гелий — 24—25 %, и с возрастом доля гелия возрастает[5].
У всех звёзд имеется магнитное поле. Например, у Солнца оно непостоянно, имеет сложную структуру, и его напряжённость в пятнах может достигать 4000 эрстед. У магнитных звёзд наблюдаются поля напряжённостью до 3,4Шаблон:E эрстед и вызванный ими эффект Зеемана[17].
Строение звёзд
Шаблон:Основная статья Из наблюдений известно, что звёзды, как правило, стационарны, то есть они находятся в гидростатическом и в термодинамическом равновесии. Это верно и для переменных звёзд (см. нижеШаблон:Переход), так как чаще всего их переменность представляет собой колебания параметров относительно точки равновесия. Кроме того, для переноса излучения должен выполняться закон сохранения энергии, так как энергия вырабатывается в центральной части звезды и переносится на её поверхность[1]Шаблон:SfnШаблон:Sfn.
В большинстве звёзд вещество подчиняется уравнению состояния идеального газа, а значения таких параметров, как температура, плотность и давление вещества, увеличиваются при приближении к центру звезды: например, в центре Солнца температура достигает 15,5 млн кельвинов, плотность — 156 г/см3, а давление — 2Шаблон:E Па[1]Шаблон:Sfn.
Внутренняя структура
Во внутренних областях звезды происходят выделение энергии и перенос её к поверхности. Энергия в звёздах, за исключением протозвёзд и коричневых карликов, вырабатывается при термоядерном синтезе (см. нижеШаблон:Переход), который происходит либо в ядре звезды, где температура и давление максимальны, либо в слоевом источнике вокруг инертного ядра. Такая ситуация встречается, например, в субгигантах, ядра которых состоят из гелия, а условия для его горения пока что не достигнуты. У Солнца граница ядра располагается на расстоянии 0,3 Шаблон:Ro от его центраШаблон:Sfn.
В звёздах имеются два основных механизма переноса энергии: лучистый перенос, который происходит, когда вещество достаточно прозрачно для быстрого переноса энергии фотонами, и конвекция, происходящая тогда, когда вещество оказывается слишком непрозрачным для лучистого переноса, из-за чего возникает достаточно большой температурный градиент, и вещество начинает перемешиваться. Области звезды, в которых энергия переносится тем или иным образом, называются, соответственно, зоной лучистого переноса и конвективной зонойШаблон:Sfn.
В различных звёздах зона лучистого переноса и конвективная зона располагаются по-разному. Например, в звёздах главной последовательности массой более 1,5 Шаблон:Mo ядро окружено конвективной зоной, а зона лучистого переноса располагается снаружи. В диапазоне масс от 1,15 до 1,5 Шаблон:Mo у звёзд имеются две конвективные зоны в центре и на границе, которые разделены зоной лучистого переноса. В звёздах с меньшей массой снаружи находится конвективная зона, а внутри — зона лучистого переноса, — к таким звёздам относится и Солнце, граница этих областей располагается на расстоянии 0,7 Шаблон:Ro от его центраШаблон:Sfn. Самые маломассивные звёзды полностью конвективны[18][19].
Атмосферы звёзд
Звёздная атмосфера — область, в которой формируется непосредственно наблюдаемое излучение[20].
- Фотосфера — самая нижняя, непрозрачная часть атмосферы. В ней формируется непрерывный спектр излучения, а сама она при наблюдениях в оптическом диапазоне выглядит как поверхность звезды. С ней же связано явление потемнения к краю, из-за которого края звезды оказываются тусклее центральных областей: например, у Солнца в видимом диапазоне края тусклее центра на 40 %[21]. Температура фотосферы Солнца составляет 6500 K, а плотность — 5Шаблон:E кг/м3[20][22].
- Обращающий слой находится над фотосферой и по сравнению с ней имеет более низкую температуру и плотность. В нём образуются линии поглощения в спектре. У Солнца температура этого слоя составляет около 4500 K, а плотность — Шаблон:E кг/м3[20].
- Хромосфера — слой звёздной атмосферы с более высокой температурой, чем у фотосферы, который создаёт эмиссионные линии в спектре. Температура хромосферы Солнца составляет 10 000 K, но её яркость в 100 раз меньше, чем у фотосферы. Этот слой отсутствует у горячих звёзд[20][23].
- Корона — внешний слой звёздной атмосферы с очень высокой температурой, но очень низкой плотностью и яркостью. В этой области происходит излучение преимущественно в рентгеновском диапазоне, и мощность в этом слое не превышает Шаблон:E общей светимости звезды; для Солнца она составляет Шаблон:E Шаблон:Lo. Из-за низкой светимости в оптическом диапазоне корона наблюдалась только у Солнца и только во время полных солнечных затмений. Температура солнечной короны составляет 1,5 млн кельвинов, но у некоторых звёзд может достигать 10 млн K[20][24].
У многих звёзд наблюдается звёздный ветер — стационарное истечение вещества из атмосферы в космос. Наиболее мощный звёздный ветер наблюдается у массивных звёзд; у маломассивных звёзд он уносит небольшую часть массы, но со временем значительно замедляет их вращение вокруг оси. Наличие звёздного ветра означает, что атмосфера звезды неустойчива[25].
Классификация
Первую успешную попытку классифицировать звёзды предпринял в 1863 году итальянский астроном и священник Анджело Секки. Он заметил сильную корреляцию между видимыми цветами звёзд и линиями поглощения в их спектрах и на основании этого разделил звёзды на четыре спектральных класса, к которым позже добавился пятый. В дальнейшем, при составлении каталога Генри Дрейпера, астрономы Гарвардской обсерватории выделили большое количество спектров, названных латинскими буквами в порядке ослабевания в них линий водорода. Эта система с изменениями легла в основу системы классификации звёзд, используемой и поныне[26][27]Шаблон:Sfn.
Естественно было бы классифицировать звёзды по виду идущих в них термоядерных реакций и их положению, что, в свою очередь, зависит от их эволюционной стадии (см. нижеШаблон:Переход). Однако без наличия соответствующей теории невозможно определить, какие реакции идут в звезде, если известны только её внешние характеристики, например, цвет и светимость, поэтому общепринятой стала именно спектральная классификация[28].
Йеркская система классификации
Система классификации звёзд, используемая до сих пор, была разработана на рубеже XIX—XX веков в Гарвардской обсерватории и получила название гарвардской системы. Принадлежность звезды к тому или иному спектральному классу определяется видом её спектра: положением максимума излучения и интенсивностью тех или иных линий поглощенияШаблон:Sfn.
Когда была построена диаграмма «спектральный класс — светимость», известная как диаграмма Герцшпрунга — Рассела, выяснилось, что звёзды расположены на ней неоднородно и сгруппированы в нескольких областях, каждой из которых был поставлен в соответствие класс светимости. Система, использующая спектральный класс и класс светимости, стала называться йеркской системой или системой Моргана — Кинана по фамилиям разработавших её астрономовШаблон:Sfn.
Спектральные классы
Основные спектральные классы звёзд в порядке уменьшения температуры — O, B, A, F, G, K, M. Изначально классы назывались в алфавитном порядке по ослабеванию в них линий водорода, но затем некоторые классы были объединены, а также была обнаружена их связь с температурой, поэтому в порядке убывания температуры последовательность стала выглядеть именно такШаблон:Sfn. Каждый из классов делится на 10 подклассов от 0 до 9 в порядке уменьшения температуры, кроме O: первоначально он делился на подклассы от O5 до O9, но затем были введены подклассы вплоть до O2[29]. Иногда используются полуцелые подклассы, как, например, B0,5. Более высокотемпературные классы и подклассы называются ранними, низкотемпературные — позднимиШаблон:SfnШаблон:Sfn. Звёзды распределены по классам крайне неравномерно: к классу M принадлежит примерно 73 % звёзд Млечного Пути, к классу K ещё около 15 %, в то время как звёзд класса O — 0,00002 %[30].
Кроме основных спектральных классов, существуют и дополнительные. Классы C (иногда делится на R и N) и S — низкотемпературные углеродные и циркониевые звёзды соответственноШаблон:SfnШаблон:Sfn. Классы L, T, Y — классы коричневых карликов в порядке понижения температуры, идущие после класса M[27].
Класс | Температура (K)[31][32][33] | Цвет | Особенности спектра |
---|---|---|---|
O | > 30 000 | Голубой | Присутствуют линии многократно ионизованных атомов, к примеру, He II[34], C III, N III, O III, Si V. Есть линии He I, линии H I слабы. |
B | 10 000—30 000 | Бело-голубой | Интенсивность линий He I максимальна, появляются линии Ca II, видны линии O II, Si II, Mg II. Линии He II отсутствуют. |
A | 7400—10 000 | Белый | Интенсивность линий H I максимальна, линии Ca II усиливаются, появляются линии нейтральных металлов. Линии He I пропадают. |
F | 6000—7400 | Жёлто-белый | Линии Ca II и других металлов, к примеру, Fe I, Fe II, Cr II, Ti II, усиливаются, линии H I слабеют. |
G | 5000—6000 | Жёлтый | Максимальная интенсивность линий Ca II, линии H I слабеют. |
K | 3800—5000 | Оранжевый | В основном наблюдаются линии металлов, в частности Ca I. Появляются полосы поглощения TiO, линии H I незначительны. |
M | 2500—3800 | Красный | Присутствует множество линий металлов и молекулярных соединений, в особенности TiO. |
C | 2500—3800 | Красный | Спектры похожи на таковые у звёзд классов K и M, однако вместо полос TiO наблюдаются сильные полосы поглощения соединениями углерода. |
S | 2500—3800 | Красный | Спектры похожи на спектры звёзд класса M, но вместо полос TiO присутствуют полосы ZrO и другие молекулярные полосы поглощения. |
L | 1300—2500 | Тёмно-красный | Выражены линии щелочных металлов, особенно Na I и K I, полосы TiO пропадают. |
T | 600—1300 | Тёмно-красный | Присутствуют полосы CH4 и H2O. |
Y | < 600 | Тёмно-красный | Появляются линии NH3. |
Иногда также используются классы W для звёзд Вольфа — Райе, P — для планетарных туманностей и Q — для новых звёздШаблон:Sfn.
Классы светимости
Звёзды одного и того же спектрального класса имеют похожие спектры и температуры, но могут иметь различные размеры и, как следствие, светимости. Поэтому для полноты классификации вводятся классы светимости, каждый из которых занимает свою область диаграммы Герцшпрунга — Рассела. Классы светимости, от более ярких к более тусклым[27]Шаблон:Sfn:
- I — сверхгиганты;
- Ia — яркие сверхгиганты;
- Iab — сверхгиганты;
- Ib — сверхгиганты низкой светимости;
- II — яркие гиганты;
- III — гиганты;
- IV — субгиганты;
- V — звёзды главной последовательности, иногда «карлики»;
- VI — субкарлики;
- VII — белые карлики.
Абсолютное большинство звёзд, 90 %, относятся к главной последовательности[35]. Солнце — жёлтая звезда главной последовательности (или просто жёлтый карлик), соответственно, его спектральный класс — G2V[27].
Спектры звёзд одного спектрального класса, но разных классов светимости, также различаются. Так, например, в более ярких звёздах спектральных классов B—F линии водорода более узкие и глубокие, чем в звёздах меньшей светимости. Кроме того, в звёздах-гигантах более сильны линии ионизованных элементов, а сами эти звёзды краснее, чем звёзды главной последовательности тех же спектральных классовШаблон:Sfn.
Дополнительные обозначения
Если спектр звезды обладает какими-то особенностями, выделяющими его среди других спектров, к спектральному классу добавляется дополнительная буква. Например, буква e означает, что в спектре есть эмиссионные линии; m означает, что в спектре сильны линии металлов. Буквы n и s означают, что линии поглощения, соответственно, широкие или узкие. Обозначение neb используется, если вид спектра указывает на наличие туманности вокруг звезды, p — для пекулярных спектров[36]Шаблон:Sfn.
Переменные звёзды
Переменными называются те звёзды, блеск которых изменяется достаточно для того, чтобы это было обнаружено с современным уровнем техники. Если переменность вызвана физическими изменениями в звезде, то она называется физической, а если освещённость, создаваемая звездой, меняется только из-за её вращения или покрытия другими объектами — геометрической. Физическая и геометрическая переменность могут сочетаться. Звёздная величина при этом может меняться как периодически, так и неправильным образом[37][38][39]. При этом переменность не является постоянной характеристикой звезды, а возникает и исчезает на различных этапах её эволюции (см. нижеШаблон:Переход) и может принимать различный характер для одной и той же звезды[40].
На данный момент известны сотни тысяч переменных звёзд, в том числе и в других галактиках. Некоторые типы переменных звёзд, к примеру, цефеиды или сверхновые, в астрономии используются как стандартные свечи и позволяют измерять расстояния в космосе[37]Шаблон:Sfn.
Классификация переменных звёзд сложна и учитывает форму кривой блеска звезды, амплитуду и периодичность его изменений и физические процессы, которые вызывают переменность. В Общем каталоге переменных звёзд, предназначенном для классификации и каталогизации переменных, выделяются сотни классов переменных звёзд, однако некоторые звёзды всё равно не относятся ни к одному из них[37][41]. Существует специальная система именования переменных звёзд (см. нижеШаблон:Переход), а сами классы переменных, как правило, называются по названию звезды, ставшей прототипом этого класса, — к примеру, прототипом переменных типа RR Лиры является звезда RR Лиры[39][42].
Можно выделить следующие основные типы переменных звёзд[39]:
- пульсирующие переменные — звёзды, переменность которых периодична и вызвана изменениями радиуса и температуры. Примером звёзд такого типа могут служить цефеиды[43];
- эруптивные переменные — звёзды, переменность которых вызвана активностью в хромосфере или короне, а также звёздным ветром или выбросами вещества. Пример звёзд этого типа — звёзды типа T Тельца[44];
- катаклизмические переменные — звёзды, изменения блеска которых резки, внезапны и сопровождаются взрывными процессами. К этому типу принадлежат новые и сверхновые звёзды[45];
- затменные переменные — двойные звёзды (см. нижеШаблон:Переход), в которых происходят периодические покрытия звёздами друг друга, в результате чего видимый блеск системы периодически понижается. Примером могут быть затменные переменные типа Алголя[46];
- вращающиеся переменные — звёзды, переменность которых проявляется при их вращении вокруг своей оси, на что могут влиять эллипсоидальная форма, сильное магнитное поле или звёздные пятна. Пример — переменные типа BY Дракона[47].
Звёздные системы
Двойные и кратные звёзды
Двойная звезда — система из двух звёзд, которые вращаются вокруг общего центра масс. Если в гравитационно-связанную систему входит несколько звёзд, то такая система называется кратной звездой, причём кратные звёзды, как правило, имеют иерархическую структуру: к примеру, тройные системы могут состоять из двойной звезды и достаточно удалённой от неё одиночной. К двойным и кратным системам принадлежит более половины всех звёзд, а периоды обращения в них могут составлять от нескольких минут до нескольких миллионов лет. Двойные звёзды служат наиболее надёжным источником информации о массах и некоторых других параметрах звёзд[48]Шаблон:Sfn.
Обычно двойные звёзды классифицируют на основании того, каким методом была обнаружена их двойственность[48]Шаблон:Sfn[49]:
- визуально-двойные звёзды — пары звёзд, компоненты которых можно различить непосредственно при наблюдениях;
- спектрально-двойные звёзды — пары звёзд, двойственность которых обнаруживается при исследованиях спектра: их движение по орбите вызывает эффект Доплера, который меняет положение спектральных линий одного или обоих компонентов;
- затменно-двойные звёзды — пары звёзд, компоненты которых периодически затмевают друг друга частично или полностью, из-за чего меняется видимая звёздная величина и наблюдается переменность. Иногда используется более широкое понятие «фотометрические двойные», которое также включает в себя случаи, когда покрытий не происходит, но одна или обе звезды под действием приливных сил друг друга вытягиваются и при вращении поворачиваются разными сторонами, в результате чего также наблюдается переменность;
- астрометрические двойные звёзды — пары звёзд, в которых наблюдается только один, более яркий объект, при этом его траектория движения не прямолинейна, что указывает на наличие тусклого массивного спутника, к примеру, белого карлика.
Также выделяют тесные двойные системы — пары звёзд, расстояние между которыми сопоставимо с их размерами. В таких системах могут наблюдаться различные явления, вызванные взаимодействием звёзд, например, перетекание вещества с одной звезды на другую, если одна или обе звезды заполняют свою полость Роша[48][49][50].
Иногда встречаются пары звёзд, близко расположенные в проекции на небесную сферу, но находящиеся друг от друга на большом расстоянии и не связанные гравитацией. Такие пары называются оптически-двойными звёздами[49].
Звёздные скопления
Звёздное скопление — группа звёзд, близко расположенных в пространстве и связанных происхождением из одного молекулярного облака. Общепринято деление звёздных скоплений на два типа — шаровые и рассеянные[51], однако иногда к звёздным скоплениям причисляют и звёздные ассоциации. Звёздные скопления ценны для астрономии тем, что звёзды в них находятся на одном расстоянии от Земли и образовались практически одновременно с почти одинаковым химическим составом. Таким образом, они различаются только начальной массой, что облегчает составление теории звёздной эволюцииШаблон:Sfn.
Шаровые звёздные скопления — плотные и массивные скопления, которые имеют шарообразную форму и повышенную концентрацию звёзд в центре скопления. Они содержат от 10 тысяч до нескольких миллионов звёзд, в среднем — около 200 тысяч, а их диаметры составляют 100—300 световых лет. Такие скопления имеют возраст порядка 10—15 млрд лет, поэтому относятся к населению II и образуют сферическую подсистему Галактики (см. нижеШаблон:Переход). Звёзды в шаровых скоплениях бедны металлами, так как образовались давно, и имеют небольшие массы, поскольку массивные звёзды уже завершили свою эволюцию (см. нижеШаблон:Переход)[52]Шаблон:SfnШаблон:Sfn.
Рассеянные звёздные скопления менее плотны, чем шаровые, и содержат меньше звёзд — от нескольких десятков до нескольких тысяч, в среднем 200—300, диаметры таких скоплений составляют до 50 световых лет. В отличие от шаровых скоплений, рассеянные не так сильно связаны гравитацией и, как правило, распадаются в течение миллиарда лет после образования. Такие скопления относятся к населению I и концентрируются к галактическому диску, а в самих скоплениях встречается много массивных и ярких звёзд[53]Шаблон:SfnШаблон:Sfn.
Звёздные ассоциации — ещё более разреженные группы звёзд общей массой менее 1000 Шаблон:Mo и диаметром до 700 световых лет[54]. Они очень слабо связаны гравитацией, поэтому распадаются в течение 10 млн лет после образования. Это означает, что они состоят из очень молодых звёзд[55]Шаблон:SfnШаблон:Sfn.
Галактики
Галактики — системы звёзд и межзвёздного вещества, самые крупные из которых могут содержать сотни миллиардов звёзд и иметь радиусы до 30 килопарсек. Звёзды распределены в галактиках неравномерно: молодые, богатые металлами звёзды населения I образуют плоскую составляющую галактики, которая наблюдается как галактический диск, а старые и бедные металлами звёзды населения II образуют сферическую составляющую, которая сильно концентрируется к центру галактики[56]Шаблон:SfnШаблон:Sfn.
Четыре основных типа галактик, выделенные ещё Эдвином Хабблом в 1925 годуШаблон:SfnШаблон:Sfn:
- эллиптические галактики — галактики без выраженной внутренней структуры, имеющие форму шара или эллипсоида. Они практически не содержат газа и пыли и состоят в основном из старых звёзд. Плоская составляющая в них отсутствует;
- линзовидные галактики внешне похожи на эллиптические, но, хотя сферическая составляющая в них является основной, они также имеют звёздный диск;
- спиральные галактики имеют как сферическую, так и плоскую составляющие, при этом последняя выражена сильнее, чем в линзовидных, а в дисках спиральных галактик обнаруживается спиральная структура;
- неправильные галактики — галактики асимметричной формы, содержащие много газа и пыли. Сферическая составляющая в таких галактиках практически отсутствует, большинство звёзд — молодые и образуют плоскую подсистему.
Эволюция звёзд
Физические и наблюдаемые параметры звёзд непостоянны, так как из-за идущих в них термоядерных реакций меняется состав звезды, уменьшается масса и излучается энергия. Изменение характеристик звезды со временем называется эволюцией звезды, этот процесс проходит по-разному у звёзд различных начальных масс[57]. Часто в таких случаях говорят о «жизни звезды», которая начинается, когда единственным источником энергии звезды становятся ядерные реакции, и заканчивается, когда реакции прекращаются[58][59][60]. Срок жизни звезды, в зависимости от начальной массы, составляет от нескольких миллионов до десятков триллионов лет[61][62]. В течение жизни у звёзд может возникать и исчезать переменность[40], а на ход эволюции звезды может влиять её принадлежность к тесной двойной системе[63].
Звёздный нуклеосинтез
Шаблон:Основная статья На разных стадиях эволюции звёзд в них проходят различные термоядерные реакции. Наиболее важные, энергетически эффективные и длительные из них — протон-протонный цикл и CNO-цикл, в которых из четырёх протонов образуется ядро гелия, — происходят в ядрах звёзд главной последовательности[64]Шаблон:Sfn.
В достаточно массивных звёздах на более поздних этапах эволюции синтезируются более тяжёлые элементы: сначала углерод в тройном гелиевом процессе, а в самых тяжёлых звёздах и более тяжёлые элементы вплоть до железа — дальнейший нуклеосинтез не идёт, так как энергетически невыгоденШаблон:SfnШаблон:Sfn. Тем не менее элементы тяжелее железа могут образовываться при так называемом взрывном нуклеосинтезе, который происходит, когда звезда теряет гидростатическое равновесие, например, при взрывах сверхновых[65].
Начальная стадия эволюции звёзд
Звёзды образуются из холодных разреженных облаков межзвёздного газа, которые начинают сжиматься из-за возникшей гравитационной неустойчивости. Изначально могут начать сжиматься только облака большой массы, но в процессе они разделяются на более маленькие области сжатия, каждая из которых уже становится отдельной звездой. По этой причине звёзды всегда формируются группами: в составе звёздных ассоциаций или звёздных скопленийШаблон:Sfn. После того как в облаке формируется гидростатически равновесное ядро, оно начинает считаться протозвездой. Протозвезда светит за счёт сжатия сначала в дальнем инфракрасном диапазоне, затем разогревается и становится видима в оптическом диапазоне. Эта стадия может длиться от Шаблон:E лет для самых крупных звёзд до Шаблон:E лет для наименее массивных[66]Шаблон:SfnШаблон:Sfn. В это время также формируются протопланетные диски вокруг звезды, которые впоследствии могут эволюционировать в планетные системыШаблон:Sfn. После этого недра звезды, если её масса составляет более 0,075 Шаблон:Mo, достаточно разогреваются, и в ней начинается синтез гелия из водорода: в это время звезда становится полноценной звездой главной последовательности. Если же масса оказывается меньше 0,075 Шаблон:Mo, то протозвезда становится коричневым карликом, в котором некоторое время может идти термоядерный синтез, но основная доля энергии выделяется за счёт сжатия[1]Шаблон:Sfn.
Главная последовательность
Шаблон:Основная статья После того как в звезде начинается синтез гелия из водорода, она становится звездой главной последовательности и в этом состоянии проводит бо́льшую часть жизни — 90 % звёзд, в числе которых и Солнце, относятся к главной последовательности[35].
Характеристики звёзд главной последовательности зависят в первую очередь от массы и, в гораздо меньшей степени, от возраста и начального химического состава: чем больше масса звезды, тем больше её температура, радиус и светимость и тем меньше срок её жизни на главной последовательности. Так, например, звезда с массой 0,1 Шаблон:Mo будет иметь светимость в 0,0002 Шаблон:Lo, температуру 3000 K и спектральный класс M6, а звезда с массой 18 Шаблон:Mo — светимость в 30 000 Шаблон:Lo, температуру 33 000 K и спектральный класс O9,5[62]. У самых тяжёлых звёзд срок жизни на главной последовательности — порядка нескольких миллионов лет, а у самых маломассивных — порядка 10 триллионов лет, что превышает возраст Вселенной[35][67]. Звёзды населения II с низким содержанием тяжёлых элементов, которые также синтезируют гелий в ядре, в несколько раз тусклее звёзд главной последовательности того же спектрального класса и называются субкарликами[68].
Стадия главной последовательности заканчивается, когда в ядре звезды остаётся слишком мало водорода и его сгорание не может продолжаться в том же режиме. Разные звёзды после этого ведут себя по-разномуШаблон:Sfn.
Эволюция звёзд после главной последовательности
У большинства звёзд гелий накапливается в ядре, а водорода остаётся всё меньше. В результате водород начинает сгорать в слоевом источнике вокруг ядра, а сама звезда переходит сначала на стадию субгигантов, а затем на ветвь красных гигантов, охлаждаясь, но многократно увеличивая свои размеры и светимостьШаблон:Sfn.
Исключение составляют звёзды массами менее 0,2 Шаблон:Mo: они полностью конвективны, и гелий в них распределяется по всему объёму. Согласно теоретическим моделям, они нагреваются и сжимаются, превращаясь в голубые карлики, а потом в гелиевые белые карлики (см. ниже Шаблон:Переход)[67]Шаблон:Sfn.
В звёздах большей массы в определённый момент начинается горение гелия. Если масса звезды составляет менее 2,3 Шаблон:Mo, он загорается взрывообразно — происходит гелиевая вспышка, и звезда оказывается на горизонтальной ветви. При большей массе гелий загорается постепенно, и звезда проходит голубую петлю. Когда в ядре накапливаются углерод и кислород, а гелия остаётся мало, ядро начинает сжиматься, и звезда переходит на асимптотическую ветвь гигантов — процессы здесь похожи на происходящие у звёзд на ветви красных гигантов. Для звёзд с массой менее 8 Шаблон:Mo эта стадия оказывается последней: они сбрасывают оболочку и становятся белыми карликами, состоящими из углерода и кислородаШаблон:SfnШаблон:Sfn.
В более массивных звёздах ядро начинает сжиматься, а звезда становится сверхгигантом. В ней начинаются термоядерные реакции с участием углерода — для звёзд с массой 8—10 Шаблон:Mo в результате углеродной детонации, а в более массивных звёздах постепенно. Вскоре могут начаться реакции и с более тяжёлыми элементами, вплоть до железа, и в звезде образуется множество слоёв, состоящих из разных элементов. После этого звезда может как сбросить оболочку, став белым карликом, состоящим из кислорода, неона или магния, так и взорваться как сверхновая, и тогда от неё останется нейтронная звезда или чёрная дыраШаблон:SfnШаблон:Sfn.
Конечные стадии эволюции звёзд
Выделяется три типа объектов, в которые звезда может превратиться в конце жизниШаблон:Sfn.
Белые карлики — объекты из вырожденного вещества с массой порядка солнечной, но в 100 раз меньшими радиусами. В белые карлики превращаются звёзды с начальными массами менее 8—10 Шаблон:Mo, сбрасывая оболочку, что наблюдается как планетарная туманность. В белых карликах не вырабатывается энергия, а излучают они лишь за счёт высокой температуры внутри них: самые горячие из них имеют температуры около 70 000 K, но постепенно остывают и становятся чёрными карликамиШаблон:SfnШаблон:Sfn.
Нейтронные звёзды образуются, если масса вырожденного ядра звезды превышает предел Чандрасекара — 1,46 Шаблон:Mo. В этом случае происходит коллапс ядра с нейтронизацией вещества, при котором происходит взрыв сверхновой. При массе нейтронной звезды, равной 2 Шаблон:Mo, её радиус будет составлять порядка 10 кмШаблон:SfnШаблон:Sfn[69].
Чёрная дыра образуется, если масса ядра превысит предел Оппенгеймера — Волкова, равный 2—2,5 Шаблон:Mo. Получившаяся нейтронная звезда оказывается неустойчивой, и коллапс будет продолжаться: дальнейшие устойчивые конфигурации неизвестны. В какой-то момент радиус ядра становится меньше радиуса Шварцшильда, при котором вторая космическая скорость становится равной скорости света, и появляется чёрная дыра звёздной массыШаблон:SfnШаблон:Sfn.
Звёздные каталоги и номенклатура
Шаблон:Основная статья Списки звёзд, содержащие какие-либо сведения о них, такие как небесные координаты, собственные движения, звёздные величины или спектральные классы, известны как звёздные каталоги. В некоторых каталогах содержится информация о звёздах определённого типа: например, только о двойных или переменных. Хранением, систематизацией и распространением данных о звёздных каталогах занимается Страсбургский центр астрономических данных. Среди современных звёздных каталогов можно выделить следующие[70][71]Шаблон:Sfn:
- Каталог Hipparcos, составленный по результатам работы одноимённого космического телескопа в 1989—1993 годах в оптическом диапазоне. Он содержит такую информацию о 118 218 звёздах, как годичные параллаксы с точностью до 0,001′′, собственные движения с точностью 0,001′′/год и звёздные величины, кроме того, этот каталог обеспечивает стандартную систему координат ICRS;
- Каталог Tycho-2 также был составлен на основе работы Hipparcos. Он обладает меньшей точностью, зато содержит сведения о более чем 2 миллионах звёзд;
- 2MASS (The Two Micron All Sky Survey) — каталог, содержащий координаты и звёздные величины в ближней инфракрасной области для 0,5 миллиарда звёзд, составленный Калифорнийским технологическим институтом.
- Каталог Gaia составлен по результатам работы космического телескопа с таким же названием. Каталог содержит, в частности, координаты и звёздные величины для более чем 1,8 миллиарда звёзд, а также параллакс и собственное движение для более чем 1,4 миллиарда. Телескоп продолжает работу, поэтому ожидается дополнение и уточнение каталога[72][73].
Номенклатура
С древности звёзды получали собственные названия (см. нижеШаблон:Переход), но с развитием астрономии появилась потребность в строгой номенклатуре. До 2016 года официальных собственных названий звёзд не было, но на 2020 год Международным астрономическим союзом утверждено 336 собственных названий[74][75].
Обозначения Байера, введённые в 1603 году Иоганном Байером, стали первыми, которые с некоторыми изменениями используются до сих пор. В его каталоге самые яркие звёзды каждого созвездия получили название в виде буквы греческого алфавита и названия созвездия. Обычно, хотя и не во всех случаях, самая яркая звезда созвездия получала букву α, вторая — β и так далее. В случае, если звёзд в созвездии было больше, чем букв в греческом алфавите, используются буквы латинского алфавита: сначала строчные от a до z, затем заглавные от A до Z. Например, ярчайшая звезда созвездия Льва — Регул — имеет обозначение α Льва[74].
Другая широко используемая система — обозначения Флемстида — появилась в 1783 году и основана на каталоге Джона Флемстида, опубликованном в 1725 году, уже после его смерти. В ней каждой звезде созвездия присваивается номер в порядке увеличения прямого восхождения. Пример такого названия — 61 Лебедя[74].
В любом случае звёзды также обозначаются по названию каталога, в котором они отмечены, и номеру в нём. Так, например, Бетельгейзе в различных каталогах имеет обозначения HR 2061, BD +7 1055, HD 39801, SAO 113271 и PPM 149643[74].
Для двойных или кратных звёзд, переменных, а также новых или сверхновых звёзд, используется иная система обозначений[74]:
- компоненты двойных и кратных звёзд, если у них нет раздельных обозначений, получают заглавные латинские буквы в конце названия. Например, белый карлик в системе Сириуса имеет обозначения Сириус B, α Большого Пса B, HD 48915 B;
- переменные звёзды имеют более сложную систему обозначений, сложившуюся исторически. Если они не имеют обозначения по Байеру, то получают название в виде заглавной латинской буквы и созвездия, в котором они расположены, в порядке открытия, начиная с R (в некоторых случаях с Q). После буквы Z следуют двухбуквенные обозначения: начиная с RR до RZ, затем от SS до SZ и так далее, до ZZ. Дальше идут обозначения от AA до AZ, от BB до BZ и так далее до QQ до QZ, причём буква J не используется. Такой способ позволяет обозначить 334 звезды в каждом созвездии, после чего их обозначают V335, V336 и так далее. Среди таких названий — R Андромеды, RR Лиры и V1500 Лебедя;
- новые и сверхновые, хотя и относятся к переменным, имеют другую систему обозначений. Новые звёзды получают название по созвездию, в котором они были замечены и по году, например, Шаблон:Iw, и одновременно название по системе переменных звёзд (эта же новая имеет обозначение V1500 Лебедя). Сверхновые звёзды обозначаются по году их открытия и по очерёдности их открытия: первые 26 обозначаются заглавными латинскими буквами от A до Z, затем строчными от aa до az, от ba до bz и так далее. Пример такого обозначения — SN1997bs[76].
История изучения
Представление о звёздах в древности
Люди с древности обращали внимание на небо и замечали на нём различные группы звёзд. Древнейшее наскальное изображение рассеянного звёздного скопления Плеяды, обнаруженное в пещере Ласко, датируется XVIII—XV тысячелетиями до нашей эры[77]. До наших дней дошли некоторые созвездия, описанные в шумерских звёздных каталогах, а из 48 созвездий, описанных Птолемеем во II веке н. э., 47 вошли в список из 88 созвездий, утверждённых Международным астрономическим союзом[78][79]. Некоторые яркие звёзды получали собственные имена, также различавшиеся в разных культурах, — наибольшее распространение получили арабские названия[75].
Звёздное небо использовалось и в прикладных целях. В Древнем Египте началом года считался день первого гелиакического восхода Сириуса[80]. Мореходы Минойской цивилизации, существовавшей с третьего тысячелетия до н. э., умели использовать звёзды для навигации[81].
Изучение видимых параметров звёзд
Значительное развитие астрономия получила в Древней Греции. Наиболее известный звёздный каталог того времени был составлен Гиппархом во II веке до н. э.: он содержал 850 звёзд, разделённых на 6 классов по блеску — в дальнейшем это разделение превратилось в современную систему звёздных величин[82]. Гиппарх также был первым, кто достоверно обнаружил переменную звезду, а именно новую приблизительно в 134 году до н. э[83]. После этого астрономы регулярно открывали новые и сверхновые звёзды: в Китае в течение X—XVII веков н. э. было обнаружено 12 новых и сверхновых. Среди них была сверхновая 1054 года, породившая Крабовидную туманность[80]. Однако переменные звёзды других типов стали открывать гораздо позже: первой из них стала Мира, переменность которой в 1609 году обнаружил Давид ФабрициусШаблон:Sfn.
При этом о самих звёздах было известно мало: в частности, они считались расположенными на очень далёкой сфере неподвижных звёзд даже после коперниковской революции — этому способствовало большое расстояние до звёзд, из-за чего никакие их относительные движения заметить было невозможно[84], а догадки, что далёкие звёзды на самом деле подобны Солнцу, только появлялись и обосновывались чаще философски. Впервые оценить расстояние до звёзд попытался в 1695 году Христиан Гюйгенс: расстояние до Сириуса у него получилось равным 0,5 светового года, при этом оценивал расстояние он фотометрически. В 1718 году Эдмунд Галлей обнаружил собственные движения Альдебарана, Сириуса и Арктура. В то же время астрономы пытались обнаружить звёздные параллаксы, но точности измерений им не хватало. Тем не менее эти попытки привели к другим открытиям: в частности, в 1802—1803 годах Уильям Гершель смог доказать, что многие двойные звёзды являются физическими парами, а не оптически-двойными звёздами. Впервые звёздный параллакс в 1818—1821 годах сумел измерить для двух звёзд Василий Яковлевич Струве, причём для одной из них — Альтаира — величина оказалась очень близкой к современному значению, хотя сам Струве не был уверен в точности результата. В 1837 году он же измерил параллакс Веги, а вскоре за ним последовали результаты других астрономов[80].
Изучение физической природы звёзд
Далёкими от истины были представления и о природе звёзд — первым шагом к её изучению стали изобретение щелевого спектрографа и развитие спектрального анализа. Фраунгоферовы линии были открыты в 1815 году, хотя Исаак Ньютон изучал спектр Солнца ещё в 1666 году. Уже в 1860-х годах были определены составы атмосфер различных звёзд, в том числе и Солнца, и в то же время Густав Кирхгоф предположил существование фотосфер звёзд, в которых должен образовываться непрерывный спектр[26]. Другим вопросом, занимавшим учёных, был источник энергии звёзд: на рубеже XIX и XX веков была популярна идея, что звёзды светят, так как выделяют энергию при гравитационном сжатии. Проблема этой гипотезы была в том, что, по расчётам, для Солнца такого механизма должно было хватать на Шаблон:E лет, тогда как по геологическим сведениям Земля существовала уже не менее Шаблон:E лет. После открытия радиоактивности Джеймс Джинс попытался объяснить свет звёзд именно ей, но эта идея также не могла объяснить такой длительный срок жизни Солнца; ему же принадлежала гипотеза, что энергия выделяется за счёт аннигиляции. Наконец, в 1920 году Артур Эддингтон предположил, что энергия выделяется при превращении ядер водорода в ядра гелия, и, хотя он не представлял, как именно происходит это превращение, в конечном итоге эта догадка оказалась верной — уже в конце 1930-х годов были открыты протон-протонный и CNO-циклы превращения водорода в гелий. После того как был определён источник энергии звёзд, стали развиваться теории звёздной эволюции, которые позволили объяснить видимое разнообразие звёзд и их распределение на диаграмме Герцшпрунга — Рассела[80].
В культуре
Разные народы выделяли разные астеризмы и созвездия, но практически во всех культурах в созвездия объединяли звёзды Большой Медведицы, Ориона и Плеяд. Зачастую наблюдаемые фигуры на небе ассоциировались с теми или иными образами, предметами или животными, что у различных народов связывалось с их мифами и легендами. Многие современные созвездия связаны именно с древнегреческой мифологией[85][86]. Звёздное небо и звёзды на нём во многих ранних цивилизациях воспринимались как божественные сущности — предположительно, эта идея зародилась в Месопотамии и оттуда распространилась по всему миру. Там же возникла и астрология, которая до Нового времени не отделялась от астрономии[87][88].
Вид звёздного неба находит отражение и в более современных произведениях культуры. К примеру, ноктюрн — стиль живописи, которому присуще изображение ночных сцен, в частности ночного неба: одна из самых известных картин этого жанра — «Звёздная ночь» Винсента ван Гога. Также звёздам посвящаются различные произведения художественной литературы, а в научной фантастике зачастую рассматриваются конкретные звёзды или звёздные системы[89][90][91].
Часто звёзды рассматриваются в более символическом смысле: в различных языках слово «звезда» имеет множество переносных значений. Схематичное изображение звезды встречается на флагах более чем 40 стран, многие из которых исламские: в этой религии звезда и полумесяц — символ мира и жизни. Звёзды играют важную роль и в других религиях: например, в христианстве широко известен сюжет о Вифлеемской звезде[89].
Примечания
Литература
- Шаблон:Книга
- Шаблон:Книга
- Шкловский И. С. Звезды: их рождение, жизнь и смерть — 3-е изд., перераб. — М.: Наука, 1984. — 384 с.
- Шкловский И. С. Вселенная, жизнь, разум. — 6-е изд., доп.— М.: Наука, 1987. — 320 с.
- Шаблон:Книга
Ссылки
Шаблон:ВС Шаблон:Звёзды Шаблон:Избранная статья Шаблон:Статья года
- ↑ 1,0 1,1 1,2 1,3 1,4 1,5 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 3,0 3,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 5,0 5,1 5,2 5,3 5,4 Шаблон:БРЭ
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 20,0 20,1 20,2 20,3 20,4 Шаблон:БРЭ
- ↑ Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ Шаблон:БРЭ
- ↑ Шаблон:БРЭ
- ↑ Шаблон:БРЭ
- ↑ 26,0 26,1 Шаблон:Статья
- ↑ 27,0 27,1 27,2 27,3 27,4 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ Римские цифры означают степень ионизации атома. I — нейтральный атом, II — однократно ионизованный, III — дважды ионизованный и так далее.
- ↑ 35,0 35,1 35,2 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 37,0 37,1 37,2 Шаблон:БРЭ
- ↑ Шаблон:Cite web
- ↑ 39,0 39,1 39,2 Шаблон:Cite web
- ↑ 40,0 40,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 48,0 48,1 48,2 Шаблон:БРЭ
- ↑ 49,0 49,1 49,2 Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ 62,0 62,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 67,0 67,1 Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 74,0 74,1 74,2 74,3 74,4 Шаблон:Cite web
- ↑ 75,0 75,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ 80,0 80,1 80,2 80,3 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:БРЭ
- ↑ 89,0 89,1 Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web