Русская Википедия:Изобретение транзистора
16 декабря 1947 года физик-экспериментатор Уолтер Браттейн, работавший с теоретиком Джоном Бардином, собрал первый работоспособный точечный транзисторШаблон:Переход. Спустя полгода, но до обнародования работ Бардина и Браттейна, немецкие физики Шаблон:Не переведено 3 и Шаблон:Не переведено 3 представили разработанный во Франции точечный транзистор («транзистрон»)Шаблон:Переход. Так из безуспешных попыток создать сначала твердотельный аналог вакуумного триодаШаблон:Переход, а затем полевой транзистор, родился первый несовершенный точечный биполярный транзистор.
Точечный транзистор, выпускавшийся серийно около десяти лет, оказался тупиковой ветвью развития электроники — ему на смену пришли германиевые плоскостные транзисторы. Теорию p-n-перехода и плоскостного транзистора создал в 1948—1950 годах Уильям ШоклиШаблон:Переход. Первый плоскостной транзистор был изготовлен 12 апреля 1950 года методом выращивания из расплаваШаблон:Переход. За ним последовали сплавной транзисторШаблон:Переход, «электрохимический» транзистор и диффузионный меза-транзисторШаблон:Переход.
В 1954 году Texas Instruments выпустила первый кремниевый транзистор. Открытие процесса мокрого окисления кремнияШаблон:Переход сделало возможным выпуск в 1958 году первых кремниевых меза-транзисторовШаблон:Переход, а в марте 1959 года Шаблон:Iw создал первый кремниевый планарный транзисторШаблон:Переход. Кремний вытеснил германий, а планарный процесс стал основной технологией производства транзисторов и сделал возможным создание монолитных интегральных схем. Шаблон:Аудиостатья введение
По мнению Жореса Алферова, так как А. Ф. Иоффе был пионером исследований полупроводников, если бы не необходимость создания атомного оружия, открытие транзисторов могло произойти в СССР[1].
Предыстория
В 1906 году Шаблон:Не переведено 3 запатентовал кремниевый кристаллический детектор[2]. В 1910 году Уильям Икклз обнаружил, что кристаллические детекторы в определённых условиях демонстрируют отрицательное дифференциальное сопротивление и потому могут быть использованы для генерации колебаний и усиления сигналовШаблон:Sfn. В 1922 году О. В. Лосев доказал возможность усиления и генерации электромагнитных колебаний на кристаллическом детекторе при подаче на него постоянного напряжения смещения (кристадинный эффект)Шаблон:Sfn. Цинкитный детектор («кристадин») Лосева сохранял работоспособность на частотах до 10 МГцШаблон:Sfn. К концу 1920-х годов кристаллические детекторы были вытеснены вакуумными лампами, а развитие этого направления физики полупроводников приостановилось.
В 1922—1927 годах Грёндаль и Гейгер изобрели и внедрили в практику медно-закисный выпрямитель, а в 1930-е годы ему на смену пришёл более совершенный селеновый выпрямительШаблон:Sfn. Как писал Уолтер Браттейн, аналогия между выпрямителем на закиси меди и вакуумным диодом была очевидна для всех, изучавших полупроводники, — и многие из них задумывались о том, как внедрить в выпрямитель третий, управляющий электрод («сетку»), сделав из выпрямителя — усилительШаблон:Sfn. В 1925 году немецкий физик Юлиус Лилиенфельд подал первую патентную заявку на твердотельный усилитель, состоящий из слоёв металла и полупроводникаШаблон:SfnШаблон:Sfn. Лилиенфельд не смог довести своё предложение даже до стадии макета: его проект не мог быть реализован в 1920-е годы из-за недостаточного развития фундаментальной наукиШаблон:Sfn. В 1935 году другой немецкий физик, Оскар Хайль, запатентовал в Великобритании принцип действия полевого транзистора. В 1938 году сотрудники Гёттингенского университета Роберт Поль и Рудольф Хилш создали твердотельный «триод», способный усиливать медленно меняющийся входной сигналШаблон:Sfn. Усилитель Пола был слишком медленным, работал только при высоких температурах и поэтому не имел практического развития, да и сам Пол не желал заниматься прикладными работами, предпочитая фундаментальную наукуШаблон:Sfn. Все эти безуспешные эксперименты в той или иной мере воспроизводили устройство вакуумного триода. Так, в «триоде» Пола управляющий электрод представлял собой мелкоячеистую металлическую сетку, управлявшую полем внутри кристалла бромида калияШаблон:Sfn. Лосев в 1939 году упоминал о работе над полупроводниковой «трёхэлектродной системой, аналогичной триоду», но эти неопубликованные работы были утраченыШаблон:Sfn.
Во время Второй мировой войны исследовательские бюджеты многократно выросли, но, по мнению Питера Морриса, в физике полупроводников было сделано слишком мало. Все существенные достижения были связаны с военным заказом в двух направлениях, в которых были бессильны вакуумные лампы, — детектирование инфракрасного излучения и детектирование отражённого сигнала в радиолокацииШаблон:Sfn. Излучатели ранних радиолокаторов работали на частотах до 3 ГГц, а частотный диапазон детекторов на вакуумных диодах был ограничен 400 МГцШаблон:Sfn. Контактные полупроводниковые детекторы, напротив, могли эффективно выпрямлять сверхвысокие частоты, поэтому в конце 1930-х годов правительства Великобритании, Германии и США начали масштабные проекты по совершенствованию полупроводников. В ходе этих исследований были исследованы фундаментальные свойства полупроводников и заложены основы технологии их производства, сделавшие возможным серийный выпуск полупроводниковых приборовШаблон:Sfn.
Открытие p-n-перехода
В 1936 году директор по исследованиям Bell Labs Мервин Келли поручил Уильяму Шокли изучить возможность создания твердотельных переключателей, способных в перспективе заменить электромеханические реле телефонных станцийШаблон:Sfn. Изучив опубликованные работы Поля, Иоффе и ДавыдоваШаблон:Sfn и результаты экспериментов Браттейна, Шокли пришёл к выводу о невозможности внедрения управляющего электрода в массив полупроводникаШаблон:Sfn. Взамен 29 декабря 1939 года Шокли сформулировал принцип работы полевого транзистора: током в канале между двумя электродами должно управлять внешнее поле, создаваемое третьим (управляющим) электродом, размещённым вне каналаШаблон:Sfn. Шокли предложил строить полупроводниковый триод на изученной Давыдовым закиси меди, но первые опыты закончились неудачно, а затем персонал Bell Labs был мобилизован на решение военно-прикладных задач. Шокли в 1940 году работал на урановом проекте, а с 1942 года и до конца войны занимался практическими задачами радиолокацииШаблон:Sfn.
Небольшое ядро физиков-твердотельщиков, оставшееся в Bell Labs после ухода Шокли, занималось поисками материалов для детектирования сверхвысоких частот в радиолокацииШаблон:Sfn. Электрохимик и радиолюбитель Рассел Ол работал с кремниевыми детекторами ещё со времён великой депрессииШаблон:Sfn. Полагая, что нестабильное поведение ранних детекторов было вызвано недостаточной очисткой от примесей, Ол сосредоточился на технологиях очистки и плавки кремнияШаблон:Sfn. В августе 1939 года Ол, Джон Скафф и Генри Тойерер провели первую плавку в гелиевой атмосфереШаблон:Sfn. Детекторы, изготовленные из поликристаллического кремния, очищенного до 99,8 %, были достаточно стабильнымиШаблон:Sfn. Часть из них проводила ток в одном направлении (из контакта в кристалл), часть — в другом (из кристалла в контакт), при этом полярность конкретного экземпляра можно было определить только опытным путёмШаблон:Sfn. Полагая, что направление проводимости определяется только степенью очистки кремния, Ол назвал один тип «очищенным», а другой «коммерческим» (Шаблон:Lang-en)Шаблон:Sfn.
В октябре 1939 года среди заготовок для детекторов нашёлся странный образец, электрические параметры которого вели себя настолько беспорядочно, что дальнейшие измерения казались бессмысленнымиШаблон:Sfn. Только 23 февраля 1940 года Ол нашёл время, чтобы лично проверить егоШаблон:Sfn. Оказалось, что образец реагировал на свет, а степень наблюдаемого фотоэффекта на порядок превосходила фотоэффект в традиционных фотоэлементахШаблон:Sfn. Проводимость образца зависела не только от освещённости, но и от температуры и влажностиШаблон:Sfn. Несмотря на противодействие своего начальника, который был не в ладах с Келли, 6 марта Ол продемонстрировал свою находку Келли и Уолтеру БраттейнуШаблон:Sfn. Браттейн догадался, что фотоэффект возникает на некоем невидимом барьере между двумя слоями кремния и что этот же барьер должен выпрямлять переменный токШаблон:Sfn. Именно поэтому измерение проводимости на переменном токе давало необъяснимые, бессмысленные результатыШаблон:Sfn.
Вскоре Скафф и Ол буквально увидели этот барьер: травление азотной кислотой вскрыло видимую глазу границу между двумя слоями кремнияШаблон:Sfn. Скафф и Ол дали этим слоям новые названия: «кремний p-типа» (от Шаблон:Lang-en, положительный) и «кремний n-типа» (negative, отрицательный), в зависимости от направления тока в изготавливаемых из этих слоёв детекторахШаблон:Sfn. Барьерная зона получила название p-n-переходШаблон:Sfn. Постепенно Ол, Скафф и Тойерер пришли к пониманию того, что тип проводимости кремния определяется не его чистотой, а, напротив, присутствием характерных примесейШаблон:Sfn. Более лёгкие элементы подгруппы бора должны были сосредотачиваться в верхнем слое расплава, более тяжёлые элементы подгруппы азота — в центре тигляШаблон:Sfn. Действительно, химический анализ кремния p-типа выявил следы бора и алюминия, а присутствие фосфора в грубо очищенном кремнии n-типа ощущалось и без приборов — при обработке такого кремния выделялся фосфинШаблон:Sfn.
Личным волевым решением Келли засекретил открытие p-n-переходаШаблон:Sfn. Bell Labs охотно делилась образцами кремния с американскими и британскими коллегами, но это был кремний исключительно p-типаШаблон:Sfn. Ол лично отвечал за то, чтобы кремний n-типа и pn-переходы не покидали стен компанииШаблон:Sfn. Шокли узнал об открытии Ола только 24 марта 1945 года, а широкая публика — 25 июня 1946 года, когда Ол и Скафф получили патенты на свои изобретения 1940 годаШаблон:Sfn.
Независимо от американских физиков, в 1941 году В. Е. Лашкарёв представил теорию «запирающего слоя» и инжекции носителей заряда на границе раздела меди и закиси меди. Лашкарёв предположил, что два типа проводимости, обнаруженные термозондом в медно-закисном элементе, разделены гипотетическим переходным слоем, препятствующим электрическому току. Работы Лашкарёва и К. М. Косогоновой («Исследование запирающих слоёв методом термозонда» и «Влияние примесей на вентильный фотоэффект в закиси меди») были опубликованы в 1941 годуШаблон:Sfn.
Точечный транзистор
Транзистор Бардина и Браттейна
В июне 1945 года Келли вновь сформировал отдел по исследованию твёрдого тела во главе с Шокли и Стэнли Морганом (в 1945 году Шокли по-прежнему был занят на военных проектах и не имел достаточно времени для единоличного управления отделом)Шаблон:Sfn. В группу вошли Браттейн, теоретик Джон Бардин, экспериментатор Джеральд Пирсон, физхимик Роберт Джибни и инженер-электрик Хилберт МурШаблон:Sfn. Образцы полупроводников изготавливали Шаблон:Не переведено 3, Джон Скафф и Генри ТойерерШаблон:Sfn. Группа опиралась на ресурсы огромной по тем временам научной организации — в конце 1940-х годов в Bell Labs работали 5700 человек, из них около 2000 — дипломированные профессионалыШаблон:Sfn.
Ознакомившись с наработками исследователей университета Пердью, Шокли сузил выбор полупроводников до двух (германия и кремния), а в январе 1946 года решил сосредоточиться на использовании эффекта поляШаблон:Sfn. Однако эксперименты показали, что в реальном полупроводнике эффект поля был на три порядкаШаблон:Sfn слабее, чем предсказывала теорияШаблон:Sfn. Бардин объяснил экспериментальные данные, предложив гипотезу поверхностных состояний, согласно которой на границе полупроводника и металлического электрода образуется пространственный заряд, нейтрализующий действие внешнего поляШаблон:Sfn.
В течение 1947 года отдел Шокли искал решение проблемы объёмного заряда, с каждым шагом отступая всё дальше и дальше от концепции полевого транзистора. Шокли писал в 1972 году, что благодаря Бардину «мы прекратили „делать транзистор“. Взамен мы вернулись к принципу, который я называю „уважение к научной стороне практической задачи“»Шаблон:Sfn. В ноябре 1947 года Джибни предложил подавать на «триод» постоянное напряжение смещения с помощью точечного управляющего электрода, отделённого от массы полупроводника слоем электролитаШаблон:Sfn. Работы резко ускорились: в ноябре — декабре Бардин, Джибни и Браттейн испытали не менее пяти разных конструкций «триода»:
Эксперименты Браттейна в ноябре — декабре 1947 годаШаблон:Sfn | |||||||||
---|---|---|---|---|---|---|---|---|---|
Дата эксперимента | Полупроводник | Диэлектрик | Усиление | Частотный диапазон | Напряжение смещения[прим. 1] | Примечания | |||
По напряжению | По току | По мощности | На «стоке» («коллекторе») | На «затворе» («эмиттере») | |||||
21 ноября | Поликристаллический кремний p-типа | Дистиллированная вода | Нет | Да | Да | <10 Гц | Положительное | Положительное | «Электролитический полевой транзистор», патент США 2 524 034 |
8 декабря | Поликристаллический германий n-типа | Электролит GUШаблон:Sfn | Да | Нет | Да | <10 Гц | Отрицательное | Отрицательное | |
10 декабря | Поликристаллический германий n-типа с приповерхностным слоем p-типа | Да | Да | Да | <10 Гц | Отрицательное | Отрицательное | ||
15 декабря | Оксидная плёнка | Да | Нет | Нет | 10 Гц — 10 кГц | Положительное | Отрицательное | ||
16 декабря | Нет | ДаШаблон:Sfn | ДаШаблон:Sfn | 2 дБШаблон:Sfn | 1 кГцШаблон:Sfn | Положительное | Отрицательное | Изобретение точечного транзистора. Патент США 2 524 035 | |
23 декабря | 24 дБ на 1 кГцШаблон:Sfn 20 дБ на 10 МГцШаблон:Sfn |
ДаШаблон:Sfn | 2 дБШаблон:Sfn | До 15 МГцШаблон:Sfn |
8 декабря Шокли, Бардин и Браттейн пришли к выводу о необходимости замены однородного полупроводника на двухслойную структуру — пластину германия, на поверхности которой был сформирован p-n-переход с высоким напряжением пробояШаблон:SfnШаблон:Sfn. 10 декабря «электролитический триод» Бардина и Браттейна на германии n-типа с инверсным слоем p-типа продемонстрировал усиление по мощности около 6000Шаблон:Sfn. Он был неприемлемо медленным даже для усиления звуковых частот, поэтому 12 декабря Бардин заменил электролит на тонкую плёнку окиси германия. Опыт в этот день окончился неудачно, вероятно, из-за повреждения плёнки при отмывке германиевой пластиныШаблон:Sfn. 15 декабря установка с оксидной плёнкой продемонстрировала двукратное усиление по напряжению в частотном диапазоне до 10 кГцШаблон:Sfn. После этого опыта Бардин предложил использовать два контактных электрода — управляющий (эмиттер) и управляемый (коллектор). По расчётам Бардина, схема могла бы усиливать мощность при межэлектродном расстоянии не более пяти микрон (2*10−4 дюйма)Шаблон:SfnШаблон:Sfn.
15 или 16 декабря 1947 года Браттейн сконструировал контактный узел из пластмассовой треугольной призмы с наклеенной на неё полоской золотой фольгиШаблон:Sfn. Аккуратно разрезав фольгу бритвой, Браттейн получил зазор между коллектором и эмиттеромШаблон:Sfn шириной около 50 микронШаблон:SfnШаблон:Sfn. 16 декабря Браттейн прижал контактный узел зазором к поверхности германиевой пластиныШаблон:Sfn, создав первый работоспособный точечный транзистор[прим. 2]. 23 декабря 1947 года Браттейн продемонстрировал коллегам транзисторный усилитель звуковых частот с пятнадцатикратным усилением по напряжениюШаблон:Sfn. На частоте 10 МГц усиление составило 20 дБ при выходной мощности 25 мВтШаблон:Sfn. 24 декабря Браттейн продемонстрировал первый транзисторный генераторШаблон:Sfn.
Так из неудачных попыток создать полевой транзистор началось развитие биполярного транзистораШаблон:Sfn. Руководство Bell Labs, понимая важность события, усилило отдел Шокли специалистами и на время засекретило проектШаблон:Sfn. Публика узнала об изобретении транзистора 30 июня 1948 года на открытой презентации транзистора в Нью-Йорке, приуроченной к выходу статей в Physical ReviewШаблон:Sfn. За месяц до этого события в Bell Labs состоялось тайное голосование по выбору имени нового прибора. Отбросив слишком длинное «полупроводниковый триод» (semiconductor triode), фактически неверное «триод на поверхностных состояниях» (surface states triode) и непонятное «йотатрон» (iotatron), Bell Labs утвердила «транзистор» (transistor) — от Шаблон:Lang-en (проводимость) или transfer (передача) и varistor (варистор, управляемое сопротивление)[3].
Транзистрон Матаре и Велкера
В 1944 году немецкий физик Шаблон:Не переведено 3, работавший за стенами Шаблон:Не переведено 3 над снижением шумов СВЧ-детекторов, изобрёл «дуодиод» — полупроводниковый выпрямитель с двумя точечными контактамиШаблон:Sfn. При подаче на эти контакты одинакового напряжения смещения и противофазных напряжений гетеродина «дуодиод» подавлял высокочастотные шумы гетеродинаШаблон:Sfn. Опыты на поликристаллическом германии Шаблон:Не переведено 3 и кремнии Карла Зайлера показали, что эффективное шумоподавление было возможно тогда, когда оба контакта замыкались на один и тот же кристаллик полупроводникаШаблон:Sfn. Если расстояние между контактами не превышало 100 микрон, изменение напряжения на одном из контактов приводило к изменению тока через второй контактШаблон:Sfn. В январе 1945 года Матаре бежал на запад от советского наступления, затем попал в плен к американцам, но вскоре был отпущенШаблон:Sfn. Велкер продолжал исследования до марта 1945 года. Независимо от Шокли, и несколько опережая его, Велкер пришёл к концепции полевого транзистора — и его первые опыты также закончились неудачейШаблон:Sfn.
В 1946 году французские и британские агенты разыскали Велкера и Матаре, допросили их о немецких разработках в радиолокации и предложили работу на французском отделении Westinghouse, где в то время разворачивалось производство германиевых выпрямителейШаблон:Sfn. Оба согласились: заниматься наукой в разгромленной Германии было невозможноШаблон:Sfn. Велкер и Матаре основали лабораторию в Ольне-су-Буа и до конца 1947 года занимались наладкой производства выпрямителейШаблон:Sfn. На рубеже 1947 и 1948 годов Матаре вернулся к теме «дуодиода», а Велкер по просьбе Матаре занялся очисткой германияШаблон:Sfn. В июне 1948 года, до обнародования изобретения Бардина и Браттейна, усовершенствованный «дуодиод», а фактически — точечный транзистор, Матаре продемонстрировал стабильное усилениеШаблон:Sfn. В июле 1948 года работами Матаре и Велкера заинтересовался министр связи Франции Шаблон:Не переведено 3, он же дал новому прибору имя «транзистрон» (Шаблон:Lang-fr)Шаблон:Sfn. В мае 1949 года Матаре и Велкер объявили о начале мелкосерийного выпуска транзистронов для дальней телефонной связиШаблон:Sfn.
Первые серийные транзисторы
В 1948—1951 годах специалисты Bell Labs под руководством Пфанна пытались наладить серийный выпуск точечных транзисторов, используя имеющуюся технологию контактных детекторов СВЧ-излученияШаблон:Sfn. Пфанн добился успеха благодаря случайному совпадению: фосфористая бронза коллекторных контактов загрязняла поверхность германия атомами фосфора, создавая островки проводимости n-типаШаблон:Sfn. Значение диффузии атомов меди, создававшей островки p-типа, было прояснено спустя несколько лет работами Шаблон:Не переведено 3Шаблон:Sfn. Транзистор Пфанна фактически был четырёхслойной PNPN-структурой, которая в определённых обстоятельствах демонстрировала несвойственное «настоящим» транзисторам отрицательное сопротивлениеШаблон:Sfn. Серийное производство транзистора «тип А» на Western Electric началось в 1951 году и в апреле 1952 года вышло на уровень 8400 транзисторов в месяцШаблон:Sfn. Производство было трудоёмко, дорого, а воспроизводимость параметров транзисторов — неприемлемо низкойШаблон:Sfn. Поведение транзисторов зависело не только от температуры, но и от влажности воздухаШаблон:Sfn. Пентагон внимательно следил за развитием технологии, но отказывался приобретать аппаратуру на ненадёжных приборахШаблон:Sfn. Несмотря на то, что в 1951 году точечный транзистор уже устарел моральноШаблон:Sfn, производство «типа А» продолжалось почти десять летШаблон:Sfn, так как последовавшие за ним транзисторы на выращенных кристаллах и сплавные транзисторы уступали «типу А» в частотных свойствах. В течение всего десятилетия, по словам Шокли, успех производства зависел от «непостижимого шаманства» (Шаблон:Lang-en)Шаблон:Sfn.
Матаре и Велкер начали производство «транзистронов» в 1949 году, а в 1950 году продемонстрировали Шокли и Браттейну работу транзисторных усилителей на телефонной линии Франция-АлжирШаблон:Sfn. Американцы насторожились: благодаря более совершенной технологии сборки «транзистроны» считались более надёжными приборамиШаблон:Sfn. Однако вскоре французское правительство прекратило поддержку Матаре и Велкера, и те вернулись в ГерманиюШаблон:Sfn. В 1952—1953 годах Матаре при поддержке Якоба Михаэля выпустил там опытную партию «транзистронов» и представил публике радиоприёмник на четырёх транзисторах (первый американский транзисторный приёмник Regency TR-1 был выпущен на год позже)Шаблон:Sfn. Американская компания Clevite (будущий владелец Shockley Semiconductor Laboratory) выкупила компанию у Михаэля, а затем свернула производство в ГерманииШаблон:Sfn. Матаре переехал в США, Велкер возглавил полупроводниковые исследования на SiemensШаблон:Sfn.
В 1949 году Элмар Франк и Ян Тауц выпустили в Чехии партию работоспособных транзисторов из трофейного немецкого германия, используя собственный (более совершенный, чем у американцев) метод формирования контактовШаблон:Sfn. В Советском Союзе А. В. Красилов и С. Г. Мадоян создали первый точечный транзистор в 1949 году, а первые промышленные образцы пошли в серию в 1950—1952 годах[4].
В 1951 году правительство США потребовало, чтобы AT&T предоставило лицензии на свои технологии всем заинтересованным американским компаниям без взимания роялти. К лету 1952 года лицензию (так называемую «книгу за 25 тысяч долларов») приобрели 26 американских и 14 иностранных компанийШаблон:Sfn, но их попытки воспроизвести точечный транзистор не имели успеха. CBS-Hytron сумела запустить точечный транзистор в серию в 1951 году, а через год прекратила его выпускШаблон:Sfn. Hughes Aircraft безуспешно пыталась делать транзисторы из отдельных зёрен поликристаллического германия и в итоге отказалась от проектаШаблон:Sfn. Philips, благодаря довоенным связям с Bell, получила лицензию раньше конкурентов, но серийное производство точечных транзисторов начала только в 1953 году, одновременно с более совершенными сплавными транзисторамиШаблон:Sfn.
В СССР первая научно-исследовательская работа по полупроводниковому триоду была выполнена в НИИ-160 (ныне НПП «Исток») дипломницей МХТИ Сусанной Гукасовной Мадоян. Лабораторный макет транзистора (точечного) заработал в феврале 1949 года.[5] Серийное производство точечных транзисторов (ТС1 — ТС7) началось в 1953 г., плоскостных (П1) — в 1955.
Ранние плоскостные транзисторы
Теория Шокли
Шаблон:Начало цитаты Главный творческий прорыв состоялся не тогда, когда я пытался изобрести транзистор, а когда я конструировал установку для экспериментов с поверхностными явлениями в точечных транзисторах. Внезапно до меня дошло, что экспериментальная структура и есть транзистор. Именно она и была запатентована как плоскостной транзистор[прим. 3]. Я был удручён тем, что, зная всё необходимое для этого изобретения, я целый год не мог соединить части целого — до тех пор, пока не появился раздражитель в лице точечного транзистора. — Уильям Шокли, 1972 Шаблон:Oq Шаблон:Конец цитаты
Точечный транзистор Бардина и Браттейна был загадкой для его создателей. Было ясно только то, что изобретатели создали не гипотетический полевой транзистор, а нечто иное. 27 декабря 1947 года Бардин и Браттейн отправили в Physical Review статью об изобретении, объяснявшую действие транзистора поверхностными эффектами в полупроводникеШаблон:Sfn. В патентной заявке 26 февраля 1948 года они дали другое объяснение, предположив существование в объёме полупроводника барьера, подобного барьеру Шоттки на границе полупроводника и металлаШаблон:Sfn. По мнению Бо Лоека, ни то, ни другое объяснение не выдерживало критики. Ни в одной рукописи Бардина и Браттейна не упоминались неосновные носители и инжекция заряда — понятия, без которых невозможно было описать поведение транзистораШаблон:Sfn.
Решение уже было записано в блокнотах Шокли — первые наброски теории p-n-перехода в германии Шокли создал ещё в апреле 1947 годаШаблон:SfnШаблон:Sfn. 8 декабря 1947 года, обсудив с Бардином и Браттейном структуру перспективного «триода», Шокли вернулся к теоретической проработке усилителя на p-n-переходахШаблон:Sfn. В последнюю неделю 1947 года он мысленно перебрал множество конфигураций, однако все они, включая схему биполярного транзистора, не выдержали критического анализаШаблон:Sfn. Только в январе 1948 года Шокли осознал, что использованная им модель не учитывала инжекции неосновных носителей заряда в базуШаблон:Sfn. Учёт механизма инжекции сделал модель полностью работоспособной. Не позднее 23 января 1948 года Шокли составил патентную заявку на биполярный транзистор (будущий патент США 2 569 347)Шаблон:Sfn и оформил свои идеи в законченную теориюШаблон:Sfn. В этой работе Шокли, наконец, отбросил попытки создать полевой транзистор и описал ещё не существующий прибор с двумя параллельными p-n-переходами — плоскостной биполярный транзистор. В ней впервые появились такие привычные ныне, но не очевидные в 1948 году утверждения, как необходимость прямого смещения эмиттерного p-n-перехода и обратного смещения коллекторного переходаШаблон:Sfn.
26 июня 1948 года Bell Labs подал патентную заявку на изобретение плоскостного транзистораШаблон:Sfn, но стоявшая за ней теория была оглашена публично только год спустя (16—18 июня 1949 года) — после того, как эксперимент подтвердил теориюШаблон:Sfn. В июле 1949 года Шокли изложил свою теорию в Шаблон:Не переведено 3Шаблон:Sfn, а в ноябре 1950 года вышел magnum opus Шокли, Electrons and Holes in SemiconductorШаблон:Sfn (в русском переводе 1953 года «Теория электронных полупроводников: Приложения к теории транзисторов»Шаблон:Sfn). По словам Ж. И. Алфёрова, книга Шокли стала «настольной книгой по обе стороны Атлантического океана»Шаблон:Sfn. Следует отметить, что Шокли описал именно плоскостной транзистор (транзистор на p-n-переходах, Шаблон:Lang-en), а теорию точечного транзистора и кристадина Лосева так никто и не создалШаблон:SfnШаблон:Sfn. Физическая сущность первого транзистора Бардина и Браттейна остаётся предметом споров: возможно, что реальные свойства использованной германиевой пластины существенно отличались от того, что предполагали экспериментаторыШаблон:Sfn. Проверить это невозможно, так как подлинный первый транзистор давно утраченШаблон:Sfn.
Публикация сделала Шокли безоговорочным авторитетом в физике полупроводников и привела к конфликту с Бардином, который в 1951 году ушёл из Bell Labs, чтобы сосредоточиться на исследованиях сверхпроводимостиШаблон:Sfn. Отношения Шокли и Бардина отчасти нормализовались только после присуждения Бардину, Браттейну и Шокли Нобелевской премии по физике за 1956 годШаблон:Sfn. Четвёртый основной соавтор изобретения, Роберт Джибни, ушёл из Bell Labs в начале 1948 года и Нобелевской премии не получилШаблон:Sfn. Впоследствии публичная активность Шокли и внимание прессы способствовали возникновению мнения о том, что Шокли якобы приписывал себе достижения Бардина, Браттейна и другихШаблон:Sfn. В действительности Шокли, напротив, всегда уточнял рамки собственного вкладаШаблон:Sfn, исключал из списка изобретателей себя самого и включал туда ДжибниШаблон:Sfn. Шокли скрупулёзно отстаивал права своих коллег, даже тех, с кем (как с Робертом Нойсом) он разошёлся навсегдаШаблон:Sfn.
Транзистор на выращенных переходах
В сентябре 1948 годаШаблон:Sfn в нью-йоркском автобусе случайно встретились два технолога Bell Labs, Шаблон:Не переведено 3 и Джон ЛиттлШаблон:Sfn. В этом случайном разговоре родилась идея производить монокристаллы «транзисторного» германия давно известным методом ЧохральскогоШаблон:Sfn. В декабре 1949 года Тил, Литтл и Эрни Бюлер построили первую опытную установку для вытягивания монокристаллов — пока ещё совсем небольших, не более 50 мм в длину и 10 мм в ширинуШаблон:Sfn. Если при вытягивании кристалла из расплава германия p-типа затравкой служил кристаллик n-типа, то внутри стержня формировался плавный p-n-переходШаблон:Sfn. Ценность именно монокристаллических полупроводников в 1949 году не была очевидной — сам Шокли противился выращиванию кристаллов, полагая, что транзистор можно сделать и из качественного, но недорогого поликристаллического материалаШаблон:SfnШаблон:Sfn. Однако именно выращенный p-n-переход позволил экспериментально проверить теорию ШоклиШаблон:Sfn.
12 апреля 1950 года Шаблон:Не переведено 3 вырастил методом Тила-Литтла трёхслойную NPN-структуруШаблон:Sfn. Вначале из расплава вытягивалась низкоомная коллекторная область n-типаШаблон:Sfn. Затем в расплав вбрасывали таблетку акцепторной примеси, растворявшуюся в тонком поверхностном слое расплава, — так формировался слой базы толщиной от 25 до 100 микрон. Сразу после создания базы в расплав вбрасывали таблетку донорной примеси для легирования эмиттера. Полученную трёхслойную NPN-структуру вырезали из кристалла, распиливали на продольные столбики и протравливали в кислоте для устранения поверхностных дефектовШаблон:Sfn. Самой сложной операцией была контактная сварка 50-микронной золотой проволоки с 25-микронным слоем базы — для этого использовались прецизионные микроманипуляторы и специальный сплав золота с галлием. Примесь галлия, внедрявшаяся в кремний при сварке, расширяла приповерхностный p-слой базы, препятствуя короткому замыканию коллектора и эмиттераШаблон:Sfn. Массовое производство германиевых транзисторов на выращенных переходах — первых полноценных биполярных транзисторов «по Шокли» — началось в 1951 году на Western Electric.
Из-за большой площади переходов транзисторы на выращенных переходах имели худшие частотные свойства, чем точечные. Но по той же причине выращенные транзисторы могли пропускать во много раз большие токи, при существенно меньших шумахШаблон:Sfn, а их параметры были относительно стабильны — настолько, что их стало возможно уверенно приводить в справочникахШаблон:Sfn. Осенью 1951 года Пентагон, воздерживавшийся от приобретения точечных транзисторов, объявил о начале программы транзисторизации, сулившей многократную экономию на массе и объёме бортовой аппаратурыШаблон:Sfn. Bell Labs ответила запуском новой производственной программы, нацеленной на ежемесячный выпуск миллиона транзисторовШаблон:Sfn. Однако диапазон допустимых температур германиевых транзисторов был слишком узок для военных задач — транзисторизация американских ракет была отложена до выпуска «высокотемпературных» кремниевых транзисторовШаблон:Sfn.
Первый выращенный кремниевый транзистор изготовил на Texas Instruments тот же Тил в апреле 1954 годаШаблон:Sfn. Из-за высокой химической активности и более высокой, чем у германия, температуры плавления кремниевые технологии 1950-х годов отставали от германиевых. Тил вспоминал о том, что на конференции Института радиоинженеров в мае 1954 года коллеги один за другим докладывали о непреодолимых трудностях в работе с кремнием — до тех пор, пока сам Тил не продемонстрировал публике работающий кремниевый транзисторШаблон:Sfn. Три последующие года, когда Texas Instruments была единственным поставщиком кремниевых транзисторов в мире, озолотили компанию и сделали её крупнейшим поставщиком полупроводниковШаблон:Sfn.
Сплавной транзистор
В 1950 году Холл и Данлоп предложили формировать p-n-переходы сплавлением, а первые практические сплавные транзисторы были выпущены General Electric в 1952 годуШаблон:Sfn. В основе типичного сплавного транзистора PNP-типа была тонкая пластина германия n-типа, служившая базой. Эти пластины сплавлялись с индиевыми или мышьяковыми бусинами, а затем отжигались при температуре около 600 °С. При правильном выборе ориентации пластин в них формировались строго параллельные эпитаксиальные слои рекристаллизованного германия n-типа. Толщина базы задавалась временем отжига. Пластина монтировалась на несущую арматуру корпуса в бескислородной среде (азот или аргон), а затем корпус герметично заваривался. Герметизация не могла заменить должной пассивации поверхности p-n-переходов, поэтому параметры сплавных транзисторов были нестабильны во времениШаблон:Sfn. Практически все сплавные транзисторы изготавливались из германия — реализация сплавной технологии в кремнии оказалась слишком сложной и дорогойШаблон:Sfn.
Переходы между зонами p-типа и n-типа в сплавных транзисторах были резкими (ступенчатыми), в отличие от плавных переходов выращенных транзисторов. Благодаря ступенчатой характеристике эмиттерного перехода сплавные транзисторы имели больший коэффициент усиления по току и были более эффективными переключателями в цифровых схемах. Ступенчатая характеристика коллекторного перехода, напротив, порождала нежелательные свойства — высокую миллеровскую ёмкость, узкий частотный диапазон (до 10 МГц), самовозбуждение усилителейШаблон:Sfn. Предельная рабочая частота сплавных транзисторов была выше, чем у транзисторов на выращенных переходах, но по-прежнему уступала точечным транзисторамШаблон:Sfn.
В середине 1950-х годов Шаблон:Не переведено 3 предложил различные варианты асимметричных сплавных структур (PNIP, NPIN), позволявшие расширить частотный диапазон до 200 МГц. По утверждению Иена Росса, Эрли стал вторым после Шокли человеком, предложившим принципиально новую структуру транзистораШаблон:Sfn, но сделал это слишком поздно. К концу 1960-х годов транзисторы Эрли, проигрывавшие по всем показателям диффузионным транзисторам, были сняты с производстваШаблон:SfnШаблон:Sfn.
Диффузионные транзисторы
Германиевый меза-транзистор
В 1950 году группа специалистов Bell Labs под руководством Шаблон:Не переведено 3 начала исследования диффузии примесей в германии с целью выработать меры против загрязнения кристаллов нежелательными примесями. Работы Фуллера развились во всеобъемлющее исследование диффузии из твёрдой и газовой сред и принесли побочный результат — создание эффективной кремниевой солнечной батареиШаблон:Sfn. В начале 1954 года Шокли предложил использовать диффузию по Фуллеру для формирования p-n-переходов с заданной глубиной и профилем концентрации примесейШаблон:Sfn.
В марте 1955 года Шокли, Джордж Дэйси и Чарльз Ли подали патентную заявку на технологию массового производства диффузионного транзистораШаблон:Sfn. В этом процессе в диффузионную печь единовременно закладывалась масса монокристаллических таблеток из германия p-типа — будущих транзисторов. Затем в течение 15 минут при 800 °С проводилась диффузия мышьяка, формировавшая на поверхности таблетки слой n-типа (базу). На поверхность каждой таблетки по трафарету наносили тонкий слой алюминия — контактную площадку будущего эмиттера. При отжиге атомы алюминия диффундировали в германий, создавая внутри базы тонкий слой p-типа (собственно эмиттер). Электрический контакт с коллектором, скрытым внутри диффузионного слоя базы, создавался при пайке кристалла к корпусу транзистора припоем, содержащим индий. Индий, диффундируя в германий, менял проводимость базового слоя с n-типа обратно на p-тип, мягко «выталкивая» слой базы из зоны пайки[6]. Внешний вид таблетки, припаянной к плоскому основанию, напоминал распространённые на юго-западе США столовые горы (Шаблон:Lang-es), оттого транзисторы этого типа стали известны как меза-транзисторыШаблон:Sfn. Технология Дэйси, Ли и Шокли пошла в серию на Western Electric, но не вышла на открытый рынок — все выпущенные транзисторы были распределены между самой Western Electric и узким кругом военных заказчиковШаблон:Sfn.
В 1957 году Philips разработал собственную меза-технологию, так называемый процесс «выталкивания базы» (Шаблон:Lang-en). В этом процессе диффузия и акцепторных (слой базы p-типа), и донорных (слой эмиттера n-типа) примесей производилась из капелек легированного свинца, нанесённых на германиевую таблетку n-типа. Транзисторы этого типа имели граничную частоту усиления до 200 МГц и массово применялись в первых лампово-полупроводниковых телевизорах. Коммерческий успех технологии POB сыграл с Philips злую шутку: компания сосредоточилась на совершенствовании германиевых технологий и сильно отстала и от американцев, и от Siemens в кремниевыхШаблон:Sfn.
Открытие мокрого окисления
В начале 1955 года в диффузионной печи Шаблон:Не переведено 3, занимавшегося в Bell Labs проблемами диффузии в кремний, произошла случайная вспышка водородаШаблон:Sfn. Часть водорода в печи сгорела с выбросом водяного пара, опытная кремниевая пластина покрылась тонким слоем диоксида кремнияШаблон:Sfn. В течение последующих двух лет Фрош и его помощник Линкольн Дерик при участии Шаблон:Не переведено 3, Фуллера и Холоньяка обстоятельно изучили процесс мокрого термического окисления и довели его до внедрения в промышленное производствоШаблон:SfnШаблон:Sfn. В отличие от непредсказуемого в то время сухого окисления в атмосфере кислорода мокрое окисление водяным паром оказалось легко воспроизводимым процессом, а полученные оксидные слои — равномерными и достаточно прочнымиШаблон:Sfn. Они надёжно задерживали тяжёлые легирующие атомы (например, сурьмы) и потому могли служить эффективной, термостойкой маской для селективной диффузии примесейШаблон:Sfn.
Фрош ещё в 1955 году предвидел широкое внедрение селективных оксидных масок, но остановился в одном шаге от идеи интеграцииШаблон:Sfn. Холоньяк писал в 2003 году, что открытие Фроша «сделало все другие методы диффузии устаревшими» и сняло последний барьер на пути к созданию интегральных схемШаблон:Sfn. Однако Фрош допустил ошибку, решив, что оксид не способен задерживать диффузию фосфора. Тонкие слои оксида, использованные Фрошем, действительно пропускали атомы фосфора, но в начале 1958 года Шаблон:Не переведено 3 установил, что достаточно толстый слой оксида способен задерживать и фосфорШаблон:Sfn. Эта ошибка задержала начало практических работ Жана Эрни по планарной технологии более чем на годШаблон:Sfn.
Работы Фроша оставались внутренним секретом Bell Labs вплоть до первой публикации в Journal of the Electrochemical Society летом 1957 годаШаблон:Sfn. Однако Уильям Шокли, уехавший в 1954 году в Калифорнию и формально уволенный из Bell Labs в сентябре 1955 годаШаблон:Sfn, безусловно был в курсе работ Фроша. Шокли оставался рецензентом и консультантом Bell Labs, регулярно получал известия о новейших работах корпорации, знакомил с ними своих сотрудниковШаблон:Sfn. Две важнейшие и ещё не обнародованные в 1956 году технологии Bell Labs — мокрое окисление и фотолитография — внедрялись в опытное производство Shockley Semiconductor LaboratoryШаблон:Sfn. «Вероломная восьмёрка», покинувшая Шокли и основавшая Fairchild Semiconductor, взяла с собой уже практическое знание этих технологийШаблон:Sfn.
Кремниевый меза-транзистор
В августе 1958 года Fairchild Semiconductor представила разработанный Гордоном Муром 2N696 — первый кремниевый меза-транзистор и первый меза-транзистор, продававшийся на открытом рынке СШАШаблон:Sfn. Технология его производства принципиально отличалась от «таблеточных» процессов Bell Labs и Philips тем, что обработка проводилась целыми, неразрезанными пластинами с применением фотолитографии и мокрого окисления по ФрошуШаблон:Sfn. Непосредственно перед резкой пластины на индивидуальные транзисторы проводилась операция глубокого травления (Шаблон:Lang-en) пластины, разделявшая островки-мезы (будущие транзисторы) глубокими канавкамиШаблон:Sfn.
Технология Fairchild существенно повысила производительность, но была для своего времени весьма рискованной: единственная ошибка на этапах диффузии, металлизации и травления пластин приводила к гибели всей партииШаблон:Sfn. Fairchild выдержала эти испытания, оставаясь почти полтора года единственным поставщиком меза-транзисторов на открытый рынок. 2N696 выгодно отличался от ближайших конкурентов (сплавных транзисторов Texas Instruments) сочетанием бо́льшей допустимой мощности и хорошего быстродействия в цифровых схемах и потому стал на время «универсальным транзистором» американского ВПКШаблон:Sfn. В вычислительной технике 2N696 работал не столь хорошо из-за долгого времени выключения в ключевом режимеШаблон:Sfn. В ноябре 1958 года — январе 1959 года Жан Эрни нашёл решение проблемы — легирование коллекторов золотомШаблон:Sfn. Решение Эрни было совершенно алогичным, невероятным: ранее считалось, что золото «убивает» усиление транзистораШаблон:Sfn. Однако легированные золотом PNP-транзисторы Эрни, запущенные в серию в начале 1959 года, имели стабильно высокий коэффициент усиления, превосходили германиевые транзисторы в скорости и оставались недосягаемыми для конкурентов до середины 1960-х годовШаблон:Sfn. Fairchild, обойдя Texas Instruments, стала абсолютным лидером отрасли и удерживала первенство до июля 1967 годаШаблон:Sfn.
Меза-технология дала разработчикам беспрецедентную гибкость в задании характеристик p-n переходов и позволила довести допустимое напряжение на коллекторе до нескольких киловольтШаблон:Sfn, а рабочую частоту до 1 ГГцШаблон:Sfn, но она имела и неустранимые недостатки. Она не позволяла формировать резисторы и потому была непригодна для производства интегральных схемШаблон:Sfn. Толстые коллекторные слои имели высокое омическое сопротивление и, как следствие, далёкие от оптимума импульсные характеристикиШаблон:Sfn. Главная же проблема меза-транзисторов была в том, что выход коллекторного p-n-перехода на отвесную «стенку» мезы не был защищён от загрязняющих примесей — как следствие, надёжность меза-транзисторов была хуже, чем у предшествовавших им сплавных транзисторовШаблон:Sfn. Микроскопические частицы, притянутые к кристаллу электрическим полем, шунтировали коллекторный переход, снижали коэффициент усиления и напряжение пробоя. Мур вспоминал, что при подаче на коллектор обратного напряжения эти частицы, разогретые током утечки, буквально светилисьШаблон:Sfn. Защитить же стенки мезы оксидным слоем было невозможно, так как окисление требовало нагрева до температур, превышающих температуру плавления алюминия контактных площадок.
Планарный транзистор
Ещё 1 декабря 1957 года Эрни предложил Роберту Нойсу планарный процесс — перспективную замену меза-технологии. По Эрни, планарная структура должна была формироваться двумя последовательными диффузиями, создающими вначале слой базы, а затем вложенный в него слой эмиттера. Выходы коллекторного и эмиттерного переходов на верхнюю поверхность кристалла изолировались от внешней среды слоем «грязного» оксида, служившим маской при второй (эмиттерной) диффузииШаблон:Sfn. Это предложение Эрни, так же, как и легирование золотом, противоречило общепринятому тогда мнениюШаблон:Sfn. Фуллер, Фрош и другие инженеры Bell Labs полагали, что «грязный» оксид в законченном транзисторе недопустим, так как атомы примесей будут неизбежно проникать из оксида в кремний, нарушая заданный профиль p-n-переходовШаблон:Sfn. Эрни доказал, что это мнение ошибочно: предшественники не учли, что при диффузии примесь поступает не только вглубь кристалла, но и распространяется вбок под оксидной маскойШаблон:Sfn. Перекрытие маски над реальным (скрытым) p-n-переходом достаточно велико, поэтому диффузией из оксида в кристалл можно пренебречьШаблон:Sfn.
В последующие полгода Эрни и Нойс не возвращались к планарной темеШаблон:Sfn. По мнению Риордана, задержка была связана с несовершенством литографского процесса Fairchild: технология 1957—1958 годов не позволяла провести четыре фотолитографии и две диффузии с приемлемым выходом годных, поэтому в последующие полгода Эрни и Нойс не возвращались к планарной темеШаблон:Sfn. В мае 1958 года им стало известно, что Мартин Аттала из Bell Labs также работает над пассивацией оксидным слоемШаблон:Sfn. Эрни, не желавший уступать инициативу конкурентам, занялся планарным диодом, а с января 1959 года сосредоточился на изготовлении планарного NPN-транзистора — преемника 2N696Шаблон:Sfn. 2 марта 1959 года Эрни создал первый опытный планарный транзисторШаблон:Sfn. К 12 марта 1959 года Эрни убедился, что новый прибор превосходит меза-транзисторы по скорости, имеет в тысячу раз меньшие токи утечки и при этом надёжно защищён от посторонних частицШаблон:Sfn.
По мнению Арджуна Саксены, задержка имела и фундаментальную причину. Согласно работам Карла Фроша, оксидный слой не мог служить маской при диффузии лёгких атомов фосфора — а именно фосфор требовался Эрни при второй, эмиттерной, диффузииШаблон:Sfn. 2 марта 1959 года (или несколькими днями позже) бывший коллега Эрни по работе у Шокли Шаблон:Не переведено 3 рассказал Эрни и Нойсу о своём опыте диффузииШаблон:Sfn. Оказалось, что достаточно толстый слой оксида способен эффективно задерживать диффузию фосфораШаблон:Sfn. Именно это знание и стимулировало активность Эрни в первой половине марта 1959 годаШаблон:Sfn.
Мур и Нойс, фактически управлявшие FairchildШаблон:Sfn, приняли решение о переходе на планарную технологию, но запуск в серию оказался неожиданно сложнымШаблон:Sfn. Fairchild выпустила первые серийные планарные транзисторы 2N1613 лишь в апреле 1960 года[7]. 26 мая 1960 года работавший на Fairchild Джей Ласт создал первую планарную интегральную микросхему по идеям Нойса[8], а в октябре 1960 года Fairchild анонсировала полный отказ от меза-транзисторовШаблон:Sfn. С тех пор планарный процесс остаётся основным способом производства транзисторов и фактически единственным способом производства интегральных схем[9].
Высокочастотные и мощные транзисторы
Совершенствование биполярных транзисторов продолжилось по двум направлениям — повышение рабочей частоты (скорости переключения) и повышение рассеиваемой мощностиШаблон:Sfn. Эти две цели требовали от разработчиков взаимоисключающих технических решений: работа на высоких частотах предполагает минимальную площадь переходов и минимальную толщину базы, а работа на больших токах, напротив, требует большой площади переходовШаблон:Sfn. Поэтому в 1960-е годы силовые и высокочастотные приборы развивались независимыми путямиШаблон:Sfn. В 1961 году кремниевые транзисторы Fairchild 2N709, спроектированные Эрни по заказу Сеймура Крея, впервые превзошли германиевые транзисторы по скорости переключения[10]. К концу 1960-х годов опытные транзисторы достигли рабочих частот в 10 ГГц, сравнявшись по быстродействию с лучшими СВЧ-радиолампамиШаблон:Sfn.
Мощность, рассеиваемая ранними типами транзисторов, не превышала 100 мВтШаблон:Sfn. В 1952 году был создан первый «силовой транзистор» с мощностью рассеивания 10 Вт. Это был обычный германиевый сплавной транзистор, припаянный к медному основанию, которое крепилось к массивному радиаторуШаблон:Sfn. В 1954 году был разработан двадцативаттный транзистор с максимальным током коллектора 1 АШаблон:Sfn. Граничная частота усиления этих транзисторов не превышала 100 кГц, а рабочая температура кристалла — 80 °СШаблон:Sfn. Рабочий ток и коэффициент усиления были невелики из-за низкого, порядка 30 Ом, сопротивления базыШаблон:Sfn.
В конце 1950-х годов разработчики мощных транзисторов переключились на диффузионные технологии и отказались от германия в пользу кремния, способного работать при температурах до 150 °СШаблон:Sfn. В 1963 году появился первый эпитаксиальный силовой транзистор с сопротивлением базы порядка 1 Ом, что позволило управлять токами в 10 А и болееШаблон:Sfn. В 1965 году RCA выпустила первый многоэмиттерный транзистор с мозаичной топологиейШаблон:Sfn, в том же году появились силовые меза-транзисторы с допустимым напряжением в 1 кВШаблон:Sfn. В 1970 году рабочий диапазон частот опытных мощных транзисторов достиг 2 ГГц при рассеиваемой мощности 100 ВтШаблон:Sfn. Тогда же, в конце 1960-х и начале 1970-х годов, начался переход от цельнометаллических корпусов (TO3, ТО36, ТО66) к пластмассовым корпусам (TO220 и аналоги)Шаблон:Sfn.
Полевой транзистор
Параллельно с совершенствованием биполярного транзистора продолжалась и работа по полевым транзисторамШаблон:Sfn. В течение десяти лет (1948—1958) она оставалась безрезультатной из-за отсутствия подходящих диэлектриковШаблон:Sfn. Затем события резко ускорились. В 1958 году Станислав Тезнер выпустил на французском отделении General Electric «Технитрон» (Technitron) — первый серийный, сплавной полевой транзисторШаблон:Sfn. Это был несовершенный германиевый прибор, отличавшийся высокими токами утечки при малой крутизне характеристикиШаблон:Sfn. В 1959 году RCA выпустила тонкоплёночный полевой транзистор на сульфиде кадмияШаблон:Sfn. В 1960 году американская Crystalonics выпустила серийный сплавной полевой транзистор на p-n-переходе с уровнем шумов ниже, чем у биполярных транзисторов. В 1962 году Texas Instruments выпустила первый планарный полевой транзистор на p-n-переходе.
Важнейшие события, как и десятью годами ранее, происходили в стенах Bell Labs. В 1959 году Мартин Аттала предложил выращивать затворы полевых транзисторов из диоксида кремния; приборы такого типа получили название МОП-структурШаблон:Sfn. В том же году Аттала и Дион Канг создали первый работоспособный МОП-транзистор[11]. Изобретение не заинтересовало менеджмент Bell, зато RCA и Fairchild начали активно экспериментировать с МОП-технологией уже в 1960 году, а в 1962 году RCA изготовило первую опытную МОП-микросхему с шестнадцатью транзисторами[11]. В 1963 году Шаблон:Не переведено 3 и Шаблон:Не переведено 3 предложили комплементарную МОП-схемотехнику[12]. Первые серийные МОП-транзисторы RCA и Fairchild вышли на рынок в 1964 году, в том же году General Microelectronics выпустила первую МОП-микросхему, в 1970-е годы МОП-микросхемы завоевали рынки микросхем памяти и микропроцессоров, а в начале XXI века доля МОП-микросхем достигла 99 % от общего числа выпускаемых интегральных схем (ИС)[11].
Комментарии
Примечания
Литература
- Шаблон:Статья
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга. Ссылки на номера страниц приводятся по препринту [1] Шаблон:Wayback
- Шаблон:Книга. Ссылки на номера страниц приводятся по препринту (часть 1 Шаблон:Wayback, часть 2 Шаблон:Wayback, часть 3 Шаблон:Wayback).
- Шаблон:Книга
- Шаблон:Статья
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга Фрагменты из этой книги публиковались как:
Ссылки
Ошибка цитирования Для существующих тегов <ref>
группы «прим.» не найдено соответствующего тега <references group="прим."/>
- Русская Википедия
- Страницы с неработающими файловыми ссылками
- Транзисторы
- История физики
- История техники
- Изобретения США
- 1947 год в науке
- Появились в 1947 году в США
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Русской Википедии
- Страницы с ошибками в примечаниях