Шаблон:Нет ссылок
Два множества <math>A,B \in \mathbb{R}^{n}</math> называются изометрически эквивалентными, если существует движение <math>f:\mathbb{R}^{n}\to \mathbb{R}^{n}</math>, переводящее <math>A</math> в <math>B</math>. то есть<math>f(A) = B </math>.
Изометрическая эквивалентность является отношением эквивалентности на множестве всех подмножеств <math>\mathcal P(\mathbb{R}^{n})</math> множества <math>\mathbb{R}^{n}</math> и, в частности, на любом подмножестве <math>X \subset\mathcal P(\mathbb{R}^{n})</math>.
Например, если <math>X \subset\mathcal P(\mathbb{R}^{2})</math> —- множество всех неприводимых коник на плоскости, то изометрическая эквивалентность разбивает его на четыре семейства классов эквивалентности, представителями которых являются четыре стандартные семейства коник:
- <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}\,=1</math> — двупараметрическое семейство вещественных эллипсов, <math>0 <b \le a</math>;
- <math> \frac{x^2}{a^2} - \frac{y^2}{b^2}\,=1</math> — двупараметрическое семействогипербол, <math>0 <b \le a</math>;
- <math> y^2 = 2px</math> — однопараматрическое семейство парабол, <math> 0 < p</math>;
- <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}\,= - 1</math> — двупараметрическое семейство мнимых эллипсов, <math>0 <b \le a</math>.
Другими словами, изометрическая эквивалентность доставляет изометрическую классификацию коник на плоскости: каждая неприводимая коника на плоскости изометрически эквивалентна только одной из перечисленных стандартных коник.
См. также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|