Русская Википедия:Изотопы свинца

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Информационный список Изото́пы свинца́ — разновидности химического элемента свинца с разным количеством нейтронов в ядре. Известны изотопы свинца с массовыми числами от 178 до 220 (количество протонов 82, нейтронов от 96 до 138) и 48 ядерных изомеров.

Свинец — последний элемент в периодической таблице, у которого существуют стабильные изотопы. Элементы после свинца стабильных изотопов не имеют. Ядра свинца имеют замкнутую протонную оболочку Шаблон:Math = 82 (магическое число), что объясняет устойчивость изотопов этого элемента; ядро 208Pb является дважды магическим (Шаблон:Math = 82, Шаблон:Math = 126), это один из пяти существующих в природе дважды магических нуклидов.

Природные изотопы свинца

Природный свинец состоит из 4 стабильных изотопов:[1]

  • 204Pb (изотопная распространённость 1,4 ± 0,6 %)
  • 206Pb (изотопная распространённость 24,1 ± 3,0 %)
  • 207Pb (изотопная распространённость 22,1 ± 5,0 %)
  • 208Pb (изотопная распространённость 52,4 ± 7,0 %)

Большие разбросы изотопной распространённости вызваны не погрешностью измерений, а наблюдаемым разбросом в различных природных минералах ввиду разных цепочек радиогенного возникновения свинца. Изотопы 206Pb, 207Pb, 208Pb являются радиогенными, то есть образуются в результате радиоактивного распада соответственно 238U, 235U и 232Th. Поэтому многие минералы имеют иной изотопный состав свинца вследствие накопления продуктов распада урана и тория. Изотопный состав, который приведён выше, характерен преимущественно для галенитов, в которых урана и тория практически нет, и пород, преимущественно осадочных, в которых количество урана находится в кларковых пределах. В радиоактивных минералах этот состав существенно отличается и зависит от вида радиоактивного элемента, слагающего минерал. В урановых минералах, таких как уранинит UO2, настуран UO2 (урановая смолка), урановые черни, в которых существенно преобладает уран, радиогенный изотоп 206Pbрад существенно преобладает над другими изотопами свинца, и его концентрации могут достигать 90 %. Например, в урановой смолке (Сан-Сильвер, Франция) концентрация 206Pb равна 92,9 %, в урановой смолке из Шинколобве (Киншаса) — 94,25 %[2]. В ториевых минералах, например, в торите ThSiO4, существенно преобладает радиогенный изотоп 208Pbрад. Так, в монаците из Казахстана концентрация 208Pb равна 94,02 %, в монаците из пегматита Бекета (Зимбабве) — 88,8 %[2]. Имеется комплекс минералов, например, монацит (Ce, La, Nd)[PO4], циркон ZrSiO4 и др., в которых в переменных соотношениях находятся уран и торий и соответственно в разных соотношениях присутствуют все или большинство изотопов свинца. Следует отметить, что в цирконах содержание нерадиогенного свинца крайне мало, что делает их удобным объектом для уран-торий-свинцового метода датирования (цирконометрия).

Помимо стабильных изотопов, в природе в следовых количествах наблюдаются другие радиоактивные изотопы свинца, входящие в состав радиоактивных рядов урана-238 (214Pb и 210Pb), урана-235 (211Pb) и тория-232 (212Pb). Эти изотопы имеют устаревшие, но ещё иногда встречающиеся исторические названия и обозначения: 210Pb — радий D (RaD), 214Pb — радий B (RaB), 211Pb — актиний B (AcB), 212Pb — торий B (ThB). Их природное содержание крайне мало, в равновесии оно соответствует содержанию родительского изотопа ряда, умноженному на отношение периодов полураспада дочернего изотопа и родоначальника ряда. Например, для свинца-212 из ряда тория это отношение равно (10,64 часа)/(1,405·1010 лет) ≈ 9·10−14; иными словами, на 11 триллионов атомов тория-232 в природном равновесии приходится лишь один атом свинца-212.

Радиоизотопы

Самыми долгоживущими радиоактивными изотопами свинца являются 205Pb (период полураспада — 17,3 млн лет), 202Pb (период полураспада — 52 500 лет) и 210Pb (период полураспада — 22,2 года). Период полураспада остальных радиоизотопов не превышает 3 суток.

Применение

Свинец-212

212Pb[3] является перспективным изотопом для Шаблон:Нп3. Период полураспада 10 часов, конечный изотоп 208Pb. Цепочка распада создает альфа- и бета-излучение. Изотоп вводится в состав фармацевтического препарата, который селективно поглощается поражёнными клетками. Альфа-частицы имеют очень небольшую длину свободного пробега в тканях, соизмеримую с размером клетки. Таким образом, разрушительное воздействие ионизирующего излучения концентрируется в поражённых тканях, а высокая разрушительная способность альфа-излучения эффективно убивает поражённые клетки[4].

212Pb входит в цепочку распада 232U, искусственного изотопа, получаемого путём облучения природного тория 232Th нейтронами в реакторе. Для медицинских целей создают мобильные генераторы 212Pb, из которых наработанный свинец вымывается химическим способом.

Свинец-208

208Pb обладает низким сечением захвата нейтронов, что делает этот изотоп пригодным в качестве теплоносителя для ядерных реакторов с жидкометаллическим теплоносителем.

Таблица изотопов свинца

Символ
нуклида
Историческое название [[Зарядовое число|Шаблон:Math]] (p) Шаблон:Math (n) Масса изотопа[5]
(а. е. м.)
Период
полураспада
[6]
(Шаблон:Math)
Канал распада Продукт распада Спин и чётность
ядра[6]
Распространённость
изотопа в природе
Диапазон изменения изотопной распространённости в природе
Энергия возбуждения
178Pb 82 96 178,003830(26) 0,23(15) мс α 174Hg 0+
179Pb 82 97 179,00215(21)# 3,9(1,1) мс α 175Hg (9/2−)
180Pb 82 98 179,997918(22) 4,5(11) мс α 176Hg 0+
181Pb 82 99 180,99662(10) 45(20) мс α (98 %) 177Hg (9/2−)
β+ (2 %) 181Tl
182Pb 82 100 181,992672(15) 60(40) мс
[55(+40−35) мс]
α (98 %) 178Hg 0+
β+ (2 %) 182Tl
183Pb 82 101 182,99187(3) 535(30) мс α (94 %) 179Hg (3/2−)
β+ (6 %) 183Tl
183mPb 94(8) кэВ 415(20) мс α 179Hg (13/2+)
β+ (редко) 183Tl
184Pb 82 102 183,988142(15) 490(25) мс α 180Hg 0+
β+ (редко) 184Tl
185Pb 82 103 184,987610(17) 6,3(4) с α 181Hg 3/2−
β+ (редко) 185Tl
185mPb 60(40)# кэВ 4,07(15) с α 181Hg 13/2+
β+ (редко) 185Tl
186Pb 82 104 185,984239(12) 4,82(3) с α (56 %) 182Hg 0+
β+ (44 %) 186Tl
187Pb 82 105 186,983918(9) 15,2(3) с β+ 187Tl (3/2−)
α 183Hg
187mPb 11(11) кэВ 18,3(3) с β+ (98 %) 187Tl (13/2+)
α (2 %) 183Hg
188Pb 82 106 187,980874(11) 25,5(1) с β+ (91,5 %) 188Tl 0+
α (8,5 %) 184Hg
188m1Pb 2578,2(7) кэВ 830(210) нс (8−)
188m2Pb 2800(50) кэВ 797(21) нс
189Pb 82 107 188,98081(4) 51(3) с β+ 189Tl (3/2−)
189m1Pb 40(30)# кэВ 50,5(2,1) с β+ (99,6 %) 189Tl 13/2+
α (0,4 %) 185Hg
189m2Pb 2475(30)# кэВ 26(5) мкс (10)+
190Pb 82 108 189,978082(13) 71(1) с β+ (99,1 %) 190Tl 0+
α (0,9 %) 186Hg
190m1Pb 2614,8(8) кэВ 150 нс (10)+
190m2Pb 2618(20) кэВ 25 мкс (12+)
190m3Pb 2658,2(8) кэВ 7,2(6) мкс (11)−
191Pb 82 109 190,97827(4) 1,33(8) мин β+ (99,987 %) 191Tl (3/2−)
α (0,013 %) 187Hg
191mPb 20(50) кэВ 2,18(8) мин β+ (99,98 %) 191Tl 13/2(+)
α (0,02 %) 187Hg
192Pb 82 110 191,975785(14) 3,5(1) мин β+ (99,99 %) 192Tl 0+
α (0,0061 %) 188Hg
192m1Pb 2581,1(1) кэВ 164(7) нс (10)+
192m2Pb 2625,1(11) кэВ 1,1(5) мкс (12+)
192m3Pb 2743,5(4) кэВ 756(21) нс (11)−
193Pb 82 111 192,97617(5) 5# мин β+ 193Tl (3/2−)
193m1Pb 130(80)# кэВ 5,8(2) мин β+ 193Tl 13/2(+)
193m2Pb 2612,5(5)+X кэВ 135(+25−15) нс (33/2+)
194Pb 82 112 193,974012(19) 12,0(5) мин β+ (100 %) 194Tl 0+
α (7,3⋅10−6%) 190Hg
195Pb 82 113 194,974542(25) ~15 мин β+ 195Tl 3/2#-
195m1Pb 202,9(7) кэВ 15,0(12) мин β+ 195Tl 13/2+
195m2Pb 1759,0(7) кэВ 10,0(7) мкс 21/2−
196Pb 82 114 195,972774(15) 37(3) мин β+ 196Tl 0+
α (3⋅10−5%) 192Hg
196m1Pb 1049,20(9) кэВ <100 нс 2+
196m2Pb 1738,27(12) кэВ <1 мкс 4+
196m3Pb 1797,51(14) кэВ 140(14) нс 5−
196m4Pb 2693,5(5) кэВ 270(4) нс (12+)
197Pb 82 115 196,973431(6) 8,1(17) мин β+ 197Tl 3/2−
197m1Pb 319,31(11) кэВ 42,9(9) мин β+ (81 %) 197Tl 13/2+
ИП (19 %) 197Pb
α (3⋅10−4%) 193Hg
197m2Pb 1914,10(25) кэВ 1,15(20) мкс 21/2−
198Pb 82 116 197,972034(16) 2,4(1) ч β+ 198Tl 0+
198m1Pb 2141,4(4) кэВ 4,19(10) мкс (7)−
198m2Pb 2231,4(5) кэВ 137(10) нс (9)−
198m3Pb 2820,5(7) кэВ 212(4) нс (12)+
199Pb 82 117 198,972917(28) 90(10) мин β+ 199Tl 3/2−
199m1Pb 429,5(27) кэВ 12,2(3) мин ИП (93 %) 199Pb (13/2+)
β+ (7 %) 199Tl
199m2Pb 2563,8(27) кэВ 10,1(2) мкс (29/2−)
200Pb 82 118 199,971827(12) 21,5(4) ч β+ 200Tl 0+
201Pb 82 119 200,972885(24) 9,33(3) ч ЭЗ (99 %) 201Tl 5/2−
β+ (1 %)
201m1Pb 629,14(17) кэВ 61(2) с 13/2+
201m2Pb 2718,5+X кэВ 508(5) нс (29/2−)
202Pb 82 120 201,972159(9) 5,25(28)⋅104 лет ЭЗ (99 %) 202Tl 0+
α (1 %) 198Hg
202m1Pb 2169,83(7) кэВ 3,53(1) ч ИП (90,5 %) 202Pb 9−
ЭЗ (9,5 %) 202Tl
202m2Pb 4142,9(11) кэВ 110(5) нс (16+)
202m3Pb 5345,9(13) кэВ 107(5) нс (19−)
203Pb 82 121 202,973391(7) 51,873(9) ч ЭЗ 203Tl 5/2−
203m1Pb 825,20(9) кэВ 6,21(8) с ИП 203Pb 13/2+
203m2Pb 2949,47(22) кэВ 480(7) мс 29/2−
203m3Pb 2923,4+X кэВ 122(4) нс (25/2−)
204Pb 82 122 203,9730436(13)[прим. 1] стабилен (>1,4Шаблон:E лет)[8][прим. 2] 0+ 0,014(1) 0,0104-0,0165
204m1Pb 1274,00(4) кэВ 265(10) нс 4+
204m2Pb 2185,79(5) кэВ 67,2(3) мин 9−
204m3Pb 2264,33(4) кэВ 0,45(+10−3) мкс 7−
205Pb 82 123 204,9744818(13)[прим. 3] 1,73(7)⋅107 лет[9] ЭЗ 205Tl 5/2−
205m1Pb 2,329(7) кэВ 24,2(4) мкс 1/2−
205m2Pb 1013,839(13) кэВ 5,55(2) мс 13/2+
205m3Pb 3195,7(5) кэВ 217(5) нс 25/2−
206Pb Радий G 82 124 205,9744653(13)[прим. 4] стабилен (>2,5Шаблон:E лет)[8][прим. 5] 0+ 0,241(1) 0,2084-0,2748
206m1Pb 2200,14(4) кэВ 125(2) мкс 7−
206m2Pb 4027,3(7) кэВ 202(3) нс 12+
207Pb Актиний D 82 125 206,9758969(13)[прим. 6] стабилен (>1,9Шаблон:E лет)[8][прим. 7] 1/2− 0,221(1) 0,1762-0,2365
207mPb 1633,368(5) кэВ 806(6) мс ИП 207Pb 13/2+
208Pb Торий D 82 126 207,9766521(13)[прим. 8] стабилен (>2,6Шаблон:E лет)[8][прим. 9] 0+ 0,524(1) 0,5128-0,5621
208mPb 4895(2) кэВ 500(10) нс 10+
209Pb 82 127 208,9810901(19) 3,253(14) ч β 209Bi 9/2+
210Pb Радий D
Радио-свинец
82 128 209,9841885(16)[прим. 10] 22,20(22) года β (100 %) 210Bi 0+ следовые количества[прим. 11]
α (1,9⋅10−6%) 206Hg
210mPb 1278(5) кэВ 201(17) нс 8+
211Pb Актиний B 82 129 210,9887370(29) 36,1(2) мин β 211Bi 9/2+ следовые количества[прим. 12]
212Pb Торий B 82 130 211,9918975(24) 10,64(1) ч β 212Bi 0+ следовые количества[прим. 13]
212mPb 1335(10) кэВ 6,0(0,8) мкс ИП 212Pb (8+)
213Pb 82 131 212,996581(8) 10,2(3) мин β 213Bi (9/2+)
214Pb Радий B 82 132 213,9998054(26) 26,8(9) мин β 214Bi 0+ следовые количества[прим. 11]
214mPb 1420(20) кэВ 6,2(0,3) мкс ИП 212Pb 8+#
215Pb 82 133 215,004660(60) 2,34(0,19) мин β 215Bi 9/2+#
216Pb 82 134 216,008030(210)# 1,65(0,2) мин β 216Bi 0+
216mPb 1514(20) кэВ 400(40) нс ИП 216Pb 8+#
217Pb 82 135 217,013140(320)# 20(5) с β 217Bi 9/2+#
218Pb 82 136 218,016590(320)# 15(7) с β 218Bi 0+

Шаблон:Примечания

Пояснения к таблице

  • Распространённость изотопов приведена для большинства природных образцов. Для других источников значения могут сильно отличаться.
  • Индексами 'm', 'n', 'p' (рядом с символом) обозначены возбужденные изомерные состояния нуклида.
  • Символами, выделенными жирным шрифтом, обозначены стабильные продукты распада. Символами, выделенными жирным курсивом, обозначены радиоактивные продукты распада, имеющие периоды полураспада, сравнимые с возрастом Земли или превосходящие его и вследствие этого присутствующие в природной смеси.
  • Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Шаблон:Math и Шаблон:Math). Неуверенно определённые значения спина и/или чётности заключены в скобки.
  • Погрешность приводится в виде числа в скобках, выраженного в единицах последней значащей цифры, означает одно стандартное отклонение (за исключением распространённости и стандартной атомной массы изотопа по данным ИЮПАК, для которых используется более сложное определение погрешности). Примеры: 29770,6(5) означает 29770,6 ± 0,5; 21,48(15) означает 21,48 ± 0,15; −2200,2(18) означает −2200,2 ± 1,8.

Примечания

Шаблон:Примечания


Шаблон:Список изотопов


Ошибка цитирования Для существующих тегов <ref> группы «прим.» не найдено соответствующего тега <references group="прим."/>