Русская Википедия:Индуцированные стволовые клетки
Индуцированные стволовые клетки (иСК) — стволовые клетки, полученные из каких-либо иных (соматических, репродуктивных или плюрипотентных) клеток путём эпигенетического перепрограммирования. В зависимости от степени дедифференцировки клетки при перепрограммировании различают: индуцированные тотипотентные, индуцированные плюрипотентные стволовые клетки (ИПСК) и получаемые так называемым прямым перепрограммированием или каким-либо иным способом[5] индуцированные прогениторные (мультипотентные или унипотентные) стволовые клетки, иногда называемые также индуцированными соматическими стволовыми клетками (ИССК).
В настоящее время существует три пути перепрограммирования соматических клеток в плюрипотентные стволовые клетки[6]:
- пересадка ядер, взятых из соматических клеток, в оплодотворённую яйцеклетку, из которой предварительно удалено ядро[1][7]
- слияние соматических клеток с плюрипотентными стволовыми клетками[8];
- модификация соматической клетки, индуцирующая её превращение в стволовую клетку, с помощью: генетического материала, кодирующего белковые репрограммирующие факторы[9][10][11]; рекомбинантных белков[12][13]; микроРНК[14][15][16][17][18], синтетической самореплицирующейся полицистронной РНК[3] и низкомолекулярных биологически активных веществ[4][19][20][21][22][23].
Природные процессы индукции
Ещё в 1895 году Томас Морган, удалив один из двух бластомеров лягушки, обнаружил, что оставшаяся часть эмбриона способна, тем не менее, воссоздать цельный эмбрион. Это означало, что клетки, при необходимости, способны изменять направление своей специализации и такое изменение скоординировано. Позднее в 1924 году, Шпеманн и Мангольд (Spemann and Mangold) показали, что важнейшую ключевую роль в процессах развития животных играют межклеточные взаимодействия называемые индукцией[24]. Метаплазией называют обратимую замену одного дифференцированного типа клеток на другой тип зрелых дифференцированных клеток[25]. Этот переход от одного типа клеток к другому может быть частью нормального процесса созревания или вызван каким-то индуцирующим его стимулом. Примерами этого перехода можно назвать трансформацию клеток радужной оболочки глаза в линзу в процессе созревания и превращение клеток пигментного эпителия сетчатки в нейрональную сетчатку при регенерации глаза у взрослых тритонов. Этот процесс позволяет организму заменить исходные клетки, не подходящие к новым условиям, на новые которые больше подходят к новым условиям. В опытах на клетках имагинальных дисков дрозофилы было обнаружено, что существует ограниченное число стандартных дискретных состояний дифференцировки и клеткам приходится выбирать одно из них. Тот факт, что трансдетерминация (смена пути дифференцировки) часто происходит не в одной, а сразу в группе клеток доказывает, что она вызвана не мутацией, а именно индуцирована[26][27].
К настоящему времени удалось выявить минимальные условия и факторы, наличия которых достаточно для индукции каскада молекулярных и клеточных процессов, направляющих дифференцировку и самоорганизацию плюрипотентных клеток в эмбрион. Роль морфогенов, как оказалось, выполняют противоположно направленные градиенты концентрации морфогенетического белка костной ткани (BMP) и белка Шаблон:Iw[28].
В основе вегетативного размножения растений лежит соматический эмбриогенез, в ходе которого из соматической клетки путём индукции фитогормонами образуются тотипотентные клетки дающие начало образованию нового организма без полового процесса. Некоторые типы зрелых, специализированных клеток взрослого организма позвоночных животных также способны естественным путём вернуться к стадии стволовой клетки[29]. Например, дифференцированные клетки желудка, называющиеся аделоморфными или «главными клетками» и синтезирующие маркер стволовых клеток Troy, обычно производят пищеварительные жидкости. Однако, они могут при необходимости превратиться обратно в стволовые клетки для «ремонтных работ» в случае травм желудка, таких как порез или повреждение вызванное инфекцией. Более того, они осуществляют этот переход даже в отсутствие заметных травм и способны восполнить пул всех клеточных линий желудочного эпителия, по существу, выступая в качестве покоящихся «резервных» стволовых клеток[30]. При повреждении трахеи, дифференцированные эпителиальные клетки дыхательных путей могут вернуться к фенотипу стабильных и функциональных стволовых клеток, если, однако, они не имеют непосредственного контакта с базальной стволовой клеткой, которая предотвращает подобную дедифференцировку[31]. Зрелые терминально дифференцированные эпителиальные клетки почки, после травмы, способны дедифференцироваться в свои более ранние версии, а затем снова дифференцироваться в типы клеток нуждавшихся в замене в повреждённой ткани[32]. Макрофаги могут самообновляться путём локальной пролиферации зрелых дифференцированных клеток[33]. Это происходит, когда понижаются концентрации или происходит ингибирование двух факторов транскрипции MafB и c-Maf, препятствующих активации программы самообновления[34]. У тритонов мышечная ткань восстанавливается из специализированных мышечных клеток, которые для этого дедифференцируются забыв свою прежнюю специализацию. Эта способность к регенерации тканей не уменьшается с возрастом, что вероятно связано со способностью тритонов при необходимости образовывать из мышечных клеток новые стволовые клетки[35].
В организме существует небольшой процент стволовых клеток, способных генерировать множество различных типов клеток. Например, Шаблон:Нп2 стволовые клетки взрослого человека обладают способностью к самообновлению и образуют в суспензионной культуре характерные скопления (кластеры) плюрипотентных клеток, которые могут дифференцироваться как in vitro, так и in vivo в энтодермальные, эктодермальные и мезодермальные клетки[36][37][38][39][40][41]. Они также легко перепрограммируются в ИПСК[42][43].
Подробное описание некоторых других хорошо документированных примеров Шаблон:Iw in vivo и их роль в развитии и регенерации рассматриваются в обзоре[44][45].
Индуцированные тотипотентные клетки (иТК)
Перепрограммирование в иТК с помощью SCNT
Индуцированные тотипотентные клетки обычно используют для клонирования[46] и получения генетически модифицированных животных[47]. Эти клетки можно получить с помощью перепрограммирования соматических клеток путём переноса ядер соматических клеток (Somatic cell nuclear transfer — SCNT) в ооциты-реципиенты[1][48][49][50][51][52]. При этом ооциты не обязательно должны принадлежать тому же виду. Иногда удаётся использовать ооциты других видов, например овец[53] или поросят[54]. И хотя эффективность межвидовой SCNT была примерно в три раза ниже обычной, такие эмбрионы удавалось довести до стадии бластоцисты[54]. Эффективность перепрограммирования можно повысить в два раза, если за сутки до пересадки остановить мейоз ооцитов-реципиентов с помощью бутиролактона1 в комбинации с нейротрофическим фактором мозга (BDNF)[55]. Кроме того, эффективность клонирования может быть значительно повышена, а процедура SCNT упрощена благодаря использованию ингибиторов гистондеацетилазы, таких как трихостатин А[56] и ингибиторов полимеризации цитоскелетного актина таких как цитохалазин В или латранкулин A (latrunculin A)[57]. Для полноценного развития образующихся эмбрионов необходимо также предварительно уменьшить метилирование лизина 4 в молекуле гистона H3 в клетках донорах ядра[58]. Кроме того для полноценного развития эмбриона необходимы также экзосомы выделяемые его клетками.[59]
Повторное клонирование на протяжении 25 поколений жизнеспособных мышей с помощью метода SCNT, основанном на добавлении в среду клеточной культуры ингибитора деацетилазы гистонов — трихостатина А,[56] показало, что можно достаточно долго (на протяжении 16 лет) неоднократно повторно клонировать животных без видимого накопления нарушений в геноме[60].
До настоящего времени бытует представление о возможности преждевременного старения клонированных животных, полученных методом SCNT. Показано, что теломеры у эмбрионов клонированных свиней, полученных с помощью стандартных методов SCNT хуже восстановлены, по сравнению с эмбрионами образующимися по естественному пути. Обработка же трихостатином А значительно увеличивает длину теломер у клонированных свиней и это может быть одним из механизмов, лежащих в основе улучшенного развития клонированных животных, после обработки трихостатином А[61].
При использовании технологии SCNT разработанной Миталиповым[1] можно получать ЭСК человека используя ядра из фибробластов кожи даже пожилых людей, что открывает широкие перспективы для технологий регенеративной медицины[62][63][64]
Разработан метод, открывающий новые возможности для создания генетически модифицированных животных с помощью гаплоидных эмбриональных стволовых клеток, которые могут быть использованы вместо спермы. Для этого из ооцита удаляют ядро. Затем в него вводят микроинъекцией сперму. Из образующейся в результате этого бластоцисты получают гаплоидные эмбриональные стволовые клетки. Эти клетки, синхронизованные в М фазе, вводят в ооцит вместо спермы, в результате чего развивается жизнеспособное потомство[65]. Эти разработки, вместе с данными о возможности неограниченного получения ооцитов из митотически активных половых стволовых клеток[66], открывают возможность промышленного производства трансгенных сельскохозяйственных животных. Так, в Китае с помощью упрощённой техники клонирования получены трансгенные овцы, у которых улучшено качество мяса и молока за счёт увеличения в них незаменимых ненасыщенных жирных кислот, которые снижают риск развития ишемической болезни сердца и необходимы для поддержки глаз и головного мозга. Ген, вызывающий синтез ω-3 полиненасыщенных жирных кислот успешно удалось передать трансгенной овце. Клонирование животных для исследовательских целей в Китае уже приобрело промышленные масштабы. Одних только различных клонов поросят производится порядка 500[67].
Подобные технологии могут также найти клиническое применения для преодоления цитоплазматических дефектов в ооцитах человека[68]. Например, разработаны технологии, которые могут воспрепятствовать нежелательному наследованию митохондриального заболевания, которое передаётся следующему поколению. Митохондрии, которые часто называют «электростанцией клетки», содержат генетический материал, который передаётся от матери к ребёнку. Мутации митохондриальной ДНК могут вызвать диабет, глухоту, заболевания глаз, желудочно-кишечные расстройства, болезни сердца, деменцию и ряд других неврологических заболеваний. Пересадкой ядра из яйцеклетки одного человека (несущей дефектную митохондриальную ДНК) в другую (здоровую) можно эффективно заменить цитоплазму клетки и вместе с ней митохондрии (и их ДНК)[69]. Полученная таким образом яйцеклетка может рассматриваться как имеющая двух матерей. Эмбрион образующийся после оплодотворения такой яйцеклетки будет иметь здоровую митохондриальную ДНК[70]. Однако насколько оправданы подобные манипуляции с клетками человека с точки зрения биоэтики пока не ясно[71].
Подробнее о новейших достижениях техники клонирования и получении тотипотентных клеток с помощью SCNT см.:[72][73]
Перепрограммирование в иТК без помощи SCNT
До недавнего времени получить тотипотентные клетки удавалось лишь с помощью SCNT. Однако появились работы где было продемонстрировано получение иТК с помощью перепрограммирования факторами Яманаки in vivo[74][75], а также in vitro с помощью таких эпигенетических факторов ооцита как зародышевая изоформа гистонов[76]. Перевести эмбриональные стволовые клетки в состояние тотипотентности характерное для ранних эмбрионов 2-клеточной стадии можно также путём подавления активности CAF-1 необходимой для сборки хроматина[77]. От превращения ЭСК и ИПСК в тотипотентные клетки, способные дать начало таким внеэмбриональным тканям как плацента и желточный мешок, плюрипотентные стволовые клетки, по-видимому, так же удерживает микроРНК-34а[78]. Ингибирование её синтеза приводит к активации экспрессии эндогенного ретровируса MuERV-L и расширяет потенциал плюрипотентных стволовых клеток до способностей клеток стадии двух бластомеров[79].
Разработан химический коктейль для получения из клеток мочи человека так называемых плюрипотентных стволовых клеток с расширенными возможностями по дифференцировке — они могут дать начало как клеткам эмбриона, так и внеэмбриональным тканям.[80] Такие супертотипотентные клетки (иСТК) могут быть использованы для получения химер с целью выращивания органов в организме животных[81][82] В частности разработана комбинация из трёх малых молекул: производного ретинола тератогена TTNPB (4-[(1E)-2-(5,5,8,8-тетраметил-5,6,7,8-тетрагидро-2-нафталинил)-1-пропен-1-ил]бензойная кислота), высокоселективного ингибитора GSK3B 1-Азакенпауллона (1-Azakenpaullone) и митогена WS6 (N-[6-[4-[2-[4-[(4-метилпиперазин-1-ил)метил]-3-(трифторметил)анилино]-2-оксоэтил]фенокси]пиримидин-4-ил]циклопропанкарбоксамид), которая позволила проводить индукцию и длительное поддержание культуры тотипотентных стволовых клеток из плюрипотентных стволовых клеток мыши[83].
.
Получение репродуктивных клеток из ИПСК
Используя среды, содержащие ретиноевую кислоту и фолликулярную жидкость свиньи, можно получить in vitro, дифференцировкой из ИПСК, клетки ранних стадий гаметогенеза подобные репродуктивным клеткам, из которых образуются сперма и ооциты[84][85][86]. Примечательно, что для образования примордиальных половых клеток человека требуется активность двух ключевых регуляторов: гена SOX17 направляющего дифференцировку в сторону образования предшественников половых клеток и Blimp1 подавляющего энтодермальные и другие соматические гены во время этой специализации[87].
В статье китайских учёных с первым автором Чжоу (Zhou) описана технология дифференциации мышиных эмбриональных стволовых клеток которые претерпевают мейоз in vitro превращаясь в гаплоидные сперматиды, способные к оплодотворению, о чём свидетельствовало получение с их помощью жизнеспособного и фертильного потомства[88][89].
Подробный обзор методов искусственного получения мужских половых клеток можно найти в статье Hou с соавторами[90] и Irie, Kim, Surani[91], а также.[92]
Разработана технология позволяющая получать зрелые ооциты in vitro из эмбриональных стволовых клеток, а также из индуцированных плюрипотентных стволовых клеток, полученных из взрослых фибробластов взятых с кончика мышиного хвоста. Более того оплодотворив такие яйцеклетки in vitro и подсадив их в матку мыши удалось с выходом в 1 % получить жизнеспособное потомство[93][94][95][96]. Эта технология послужит платформой для выяснения молекулярных механизмов, лежащих в основе тотипотентности и для разработки методов производства ооцитов из других (в том числе редких) видов млекопитающих в лабораторных условиях.
ИПСК как результат радикального омоложения
Предыстория открытия
Впервые ИПСК были получены в виде перевиваемой тератокарциномы, индуцированной трансплантатом, взятым из мышиных эмбрионов[97]. Было доказано, что тератокарциномы образуются из соматических клеток[98]. Тот факт, что из клеток тератокарциномы можно получить нормальную мышь доказывал их плюрипотентность[99][100][101]. Оказалось, что клетки тератокарциномы, выделяя в культуральную среду различные факторы, способны поддерживать культуру плюрипотентных стволовых клеток эмбриона в недифференцированном состоянии[102]. Таким образом, ещё в 1980-е годы стало ясно[103][104][105], что трансплантация плюрипотентных или эмбриональных стволовых клеток во взрослый организм млекопитающих обычно приводит к образованию тератомы, которая затем может превратиться в злокачественную опухоль — тератокарциному[106]. Если, однако, поместить клетки тератокарциномы в ранний зародыш млекопитающего (на стадии бластоцисты), то они включаются в состав клеточной массы бластоцисты и из такого химерного (то есть состоящего из клеток от разных организмов) эмбриона нередко развивается нормальное химерное животное. Почти во всех органах и тканях которого часть дифференцированных клеток происходит из клеток тератокарциномы, которые совместно с клетками нормального происхождения участвуют в построении здорового организма[104][105][107]. Это свидетельствовало о том, что причиной образования тератомы является диссонанс в стадии развития донорных клеток и окружающих их клеток реципиента (так называемой ниши). Уже тогда, используя ретровирусные векторы, удалось ввести инородные гены в мышиные химеры, полученные с помощью клеток тератокарциномы[108].
Открытие роли репрограммирующих факторов
В августе 2006 года японские исследователи сумели превратить клетки мышиной кожи (фибробласты) в индуцированные плюрипотентные стволовые клетки — ИПСК (induced pluripotent stem cells — iPSC), используя для модификации клетки всего четыре репрограммирующих фактора: Oct4, Klf4, Sox2 и c-Myc, доставленных в ядро ретровирусами[2]. Этим они доказали, что гиперэкспрессия небольшого количества факторов иногда может подтолкнуть клетки к переходу в новое стабильное состояние, связанному с изменениями активности тысяч генов. По своим свойствам ИПСК оказались очень похожи на эмбриональные стволовые клетки (ЭСК)[109]. Так, сравнение протеома и фосфопротеома ЭСК и ИПСК, проведённое на 4-х линиях человеческих эмбриональных стволовых клеток и 4-х линиях индуцированных плюрипотентных стволовых клеток, показало, что большинство идентифицированных белков и участков фосфорилирования в белках всех линий совпадают. Хотя были и небольшие, но статистически воспроизводимые различия, свидетельствующие об определённом функциональном различии[110]. Не было отмечено и особых изменений в последовательности ДНК, особенно если ИПСК были получены с помощью неинтегрирующихся в геном плазмид[111]. Позднее, с развитием технологии перепрограммирования, лучшим доказательством идентичности ИПСК и ЭСК стала возможность получения взрослой мыши полностью из некоторых линий ИПСК[112][113]. Несмотря на то, что рядом исследований была доказана идентичность ЭСК и ИПСК[114], получаемые клоны сильно отличаются друг от друга и не для всех из них можно доказать идентичность с ЭСК[115], далеко не все клоны способны дать жизнь химерным мышам или подвергнуться эффективной дифференциации в те или иные соматические клетки. Одной из причин таких различий является разница между составом транскрипционных факторов при репрограммировании в ИПСК и набором факторов в материнском ооците. К числу таких «упущенных» факторов относится, в частности способствующий процессу репрограммирования особый, характерный для ооцитов линкерный (связующий, компонующий нуклеосомы) гистон H1foo[116]. Замена одного из факторов Яманаки, а именно c-Myc на H1foo, значительно повысили количество и качество получаемых клонов ИПСК — они стали более однородными по свойствам, из них чаще стали получаться мыши-химеры[116].
Oct4 положительно регулирует гены, связанные с плюрипотентностью и самообновлением, а также подавляет гены, способствующие дифференцировке[117][118]. Избыточная экспрессия Oct4 во время перепрограммирования ухудшает качество ИПСК — по сравнению с OSKM (Oct4, Sox2, Klf4 и c-Myc), перепрограммирование SKM (Sox2, Klf4 и c-Myc) генерирует ИПСК с высоким потенциалом развития (почти в 20 раз выше, чем у OSKM), что доказано по их способности генерировать мышей методом тетраплоидной комплементации из эмбрионов полностью состоящих из ИПСК[119][120][121]. В то же время перепрограммирование SKM видоспецифично, оно может быть достигнуто в клетках мыши, но не в клетках человека[119]
Технология получения ИПСК является способом радикального омоложения
Важным преимуществом ИПСК перед ЭСК является то, что они могут быть получены из клеток взрослого организма, а не из эмбриона. Поэтому стало возможным получать ИПСК от взрослых и даже пожилых пациентов[11][122][123][124]. Перепрограммирование соматических клеток в ИПСК приводит к их омоложению о чём свидетельствуют данные исследования теломеров— концевых участков хромосом состоящих из коротких следующих друг за другом повторов эволюционно консервативной последовательности ДНК. Выяснилось, что перепрограммирование приводит к удлинению теломеров и их нормальному укорочению по мере дифференцировки ИПСК обратно в фибробласты[125]. Таким образом, при индуцированной плюрипотенции восстанавливается эмбриональная длина теломеров[126], а значит, увеличивается потенциальное число делений клетки[127][128], ограниченное так называемым лимитом Хайфлика (Hayflick limit). Более того омолаживаются и митохондрии клетки при этом восстанавливается характерный для молодых клеток уровень дыхания[129] Поэтому технология получения ИПСК является способом радикального омоложения[130].
Тератомы как препятствие на пути внедрения технологии в клинику
Из-за диссонанса в стадии развития омоложённых клеток и окружающих их старых клеток реципиента, инъекция пациенту его же собственных ИПСК, обычно приводит к иммунной реакции[133], что может быть использовано в медицинских целях[134], или образованию опухолей типа тератомы[135]. Одной из причин иммуногенности аутологичных ИПСК и ЭСК считается группа из 9 генов (Hormad1, Zg16, Cyp3a11, Lce1f, Spt1, Lce3a,Chi3L4, Olr1, Retn), синтез которых повышен в тератомах, полученных из этих клеток[136][137][138] Очевидно, некоторые клетки, дифференцированные из ИПСК и ЭСК, продолжают синтезировать эмбриональные изоформы белков[139] и неадекватно интерпретируют сигналы окружающих их клеток реципиента. Образование тератомы из плюрипотентных стволовых клеток может быть вызвано низкой активностью фермента PTEN, способствующей выживанию, в процессе дифференцировки, небольшой популяции (не превышающей 0,1-5 % от общей численности клеток) высоко онкогенных клеток карциномы, инициирующих тератомы. Выживание этих инициирующих тератомы клеток связано с недостаточной репрессией Nanog, а также с повышением метаболизма глюкозы и холестерина.[140] Эти, инициирующие образование тератом, клетки характеризуются также более низким соотношением p53/p21 по сравнению с неонкогенными клетками.[141]
Недавно методом отбора удалось найти небольшие молекулы (цитотоксические селективные ингибиторы плюрипотентных стволовых клеток человека), которые предотвращают образование тератомы у мышей после трансплантации им плюрипотентных стволовых клеток человека. Самое мощное и селективное из этих соединений — PluriSIn #1, вызывало ингибирование стеароил-КоА десатуразы (ключевого фермента в биосинтезе олеиновой кислоты), что в конечном итоге приводило к апоптозу плюрипотентных стволовых клеток. С помощью этой молекулы удаётся выборочно удалить из культуры недифференцированные клетки.[142][143]. Ещё одной молекулой избирательно удаляющей недифференцированные клетки является STF-31,[144] являющийся ингибитором GLUT1.[145] Эффективной стратегией избирательного устранения плюрипотентных клеток, которые способны дать начало тератоме является ингибирование характерных для этих клеток антиапоптотических факторов, таких как сурвивин или Bcl10. Обработкой малыми молекулами, которые могут ингибировать эти антиапоптотические факторы, можно добиться селективного удаления подобных клеток вызвав их апоптоз. В частности, одной обработки смешанной популяции химическими ингибиторами сурвивина (такими как, например, кверцетин или YM155) достаточно чтобы вызвать избирательную и полную гибель недифференцированных клеток, вызванную накоплением р53 в митохондриях. Этого, по мнению авторов исследования, достаточно, чтобы предотвратить образование тератомы после трансплантации клеток полученных из ИПСК[146]. О способе удаления плюрипотентных клеток с помощью красителя см. ниже. Тем не менее, маловероятно, что какая либо, пусть даже самая изощрённая, предварительная очистка[147], способна обезопасить подсадку ИПСК или ЭСК, так как при избирательном удалении плюрипотентных клеток, они вновь довольно быстро возникают путём превращения дифференцированных клеток обратно в стволовые (к обратному переходу может в частности подтолкнуть гипоксия[148]), что приводит к образованию опухоли[149][150][151]. Это может быть связано с нарушением регуляции осуществляемой микро РНК let-7 по отношению к её мишени — белку Nr6a1 (известному также как ядерный фактор зародышевых клеток — GCNF), являющемуся эмбриональным репрессором транскрипции генов плюрипотентности, который необходим для правильной дифференцировки индуцированных плюрипотентных клеток.[152][153] Обнаружена также малая молекула названная Дисплюригеном (Displurigen), которая воздействуя на белок теплового шока HSPA8 (Heat shock 70 kDa protein 8), необходимый для связывания OCT4 с ДНК, способна вывести клетку из состояния плюрипотентности[154]. Ещё один способ предотвратить образование тератомы — это вызвать в пересаживаемой клетке ИПСК гиперэкспрессию гена CREG[155]
Использование ИПСК для клеточной терапии пока ограничено.[156] Тем не менее, они могут быть использованы для целого ряда иных целей — включая моделирование болезней, скрининг (селективный отбор) лекарств, проверку токсичности различных препаратов[157]. Важными факторами для получения высококачественных ИПСК являются определённые небольшие молекулы, способствующие сохранению геномной целостности, образующихся при перепрограммировании ИПСК, путём ингибирования двухцепочечных разрывов ДНК и активации гена Zscan4, содействующего процессам репарации ДНК[158]. Перепрограммирование вызывает репликативный стресс, который можно снизить повысив уровень чекпоинт киназы 1 (CHK1), благодаря чему повышается качество и эффективность образования ИПСК. Кроме того добавление во время перепрограммирования нуклеозидов позволяет снизить повреждения ДНК и число геномных перестроек в получаемых ИПСК[159]
Ткани, выращенные из ИПСК, помещённых в «химерные» эмбрионы на ранних стадиях развития мыши, практически не вызывают иммунного ответа (после того, как эмбрионы выросли во взрослых мышей) и пригодны для аутологичной трансплантации,[160][161] причём даже в том случае когда ИПСК получены от очень старых животных[162].
Перепрограммирование с омоложением in vivo
В ранних работах полное перепрограммирование взрослых клеток в тканях у мышей in vivo путём временной активации факторов Oct4, Sox2, Klf4 и с-Мус, приводило к образованию в различных органах множества тератом[74]. Более того, частичное перепрограммирование клеток в ИПСК in vivo показало, что неполное перепрограммирование приводит к эпигенетическим изменениям (нарушению репрессии Поликомб целей и изменению метилирования ДНК) в клетках, которые ведут к развитию рака[163][164]
Способы омолаживающего трансдифференцирования без достижения плюрипотентности
Изменив продолжительность и дозировку удалось провести без последующего канцерогенеза циклическое частичное перепрограммирование in vivo путём экспрессии факторов Яманака в течение короткого периода времени (с их экспрессией в течение 2 дней и интервалом без экспрессии в течение 5 дней). Такими, циклически повторяемыми активациями факторов Яманака, удалось частично омолодить, и, таким образом, продлить продолжительность жизни прогероидных мышей.[165][166] Используя мышиную модель, которая обеспечивает индуцируемую экспрессию четырёх факторов Яманаки (Oct-3/4, Sox2, Klf4 и c-Myc) удалось путём их временной экспрессией in vivo индуцировать частичное перепрограммирование взрослых гепатоцитов в состояние предшественников и увеличить пролиферацию клеток, что по мнению авторов статьи может противодействовать печёночной недостаточности[167]
В опытах in vitro, при использовании несколько более длительных периодов перепрограммирования (чтобы достичь более существенного омоложения) клетки теряли свою клеточную идентичность[168], но затем восстанавливали свою первоначальную соматическую идентичность, при удалении факторов репрограммирования.[169]
Длительное частичное перепрограммирование in vivo приводит к омолаживающим эффектам в различных тканях, таких как почки и кожа, а также в целом на уровне организма. Многократность лечения определяла степень положительного эффекта. Омолаживающие эффекты были связаны со снижением возраста по данным эпигенетических часов, а также по данным метаболических и транскриптомных изменений, включая снижение экспрессии генов, участвующих в путях воспаления, клеточного старения и реакции на стресс[170][171]
Эффективность методов частичного перепрограммирования как in vitro, так и in vivo пока очень низкая, поскольку клетки в процессе частичного перепрограммирования усиливают экспрессию NK-активирующих лигандов, таких как MULT1 и ICAM-1, в результате чего NK-клетки распознают и убивают частично перепрограммированные клетки. Поэтому повысить эффективность частичного перепрограммирования in vivo помогает истощение пула NK-клеток[172]
Алгоритм для предсказания набора транскрипционных факторов необходимых для преобразования клеток
Определение уникального набора транскрипционных факторов, которые необходимы для репрограммирования клеток представляет собой длительный и дорогостоящий процесс. Международная группа исследователей разработала алгоритм, называемый Магрифи (Mogrify), который помогает предсказать оптимальный набор клеточных факторов, необходимых для преобразования одного типа клеток человека в другой[173][174]. Появился также алгоритм, который предсказывает не только транскрипционные факторы необходимые для перепрограммирования, но также и идеальный выбор времени для применения этих факторов.[175][176] Поскольку выяснилось что нуклеосомы с меткой на гистоне H3 называемой H3K4me3 обычно сидят на последовательностях ДНК предшествующих генам, которые важны для определения судьбы клетки, предопределения её типа, стало возможным с помощью алгоритма эпиМагрифи (EpiMOGRIFY) находить подобные гены чтобы влиять на дифференцировку культивируемых клеток[177][178][179]
Спрогнозировать результаты целенаправленных вмешательств и помочь разработке процессов перепрограммирования может программа cSTAR (cell state transition assessment and regulation) классифицирующая состояния клеток на основании данных протеогеномики[180]
Атлас транскрипционных факторов для направленной дифференцировки
Факторы транскрипции (TFs) регулируют генные программы, тем самым контролируя различные клеточные процессы и состояния клеток. Создан Атлас транскрипционных факторов для направленной дифференцировки и библиотека MORF (multiplexed overexpression of regulatory factors) мультиплексной гиперэкспрессии регуляторных факторов, которые помогут идентифицировать комбинации факторов транскрипции, которые управляют определенными фенотипами.[181]
Стратегии получения ИПСК для клинических испытаний
Разработаны критерии качества и стратегия производства ИПСК для клинических испытаний, так называемая cGMP (Шаблон:Lang-en)[182][183].
Стратегия получения универсальных ИПСК
Чтобы сделать доступными технологии регенеративной медицине на основе ИПСК большему числу пациентов, необходимо создавать универсальные ИПСК, которые можно трансплантировать независимо от гаплотипов HLA. Текущая стратегия создания универсальных ИПСК преследует две основные цели: удаление экспрессии HLA и предотвращение атак со стороны NK-клеток, которые вызваны делецией HLA. Сообщалось, что делеция генов B2M и CIITA с использованием системы CRISPR/Cas9 подавляет экспрессию HLA класса I и класса II соответственно. Для предотвращения атак NK-клеток использовалась трансдукция лигандов, ингибирующих NK-клетки, таких как HLA-E и CD47. [184] HLA-C при этом оставляют без изменения, поскольку 12 часто встречающихся аллелей HLA-C достаточно для охвата 95 % населения мира.[184]
Система индуцируемого апоптоза для безопасности
Чтобы обезопасить применение ИПСК в клинике, было предложено одновременно с перепрограммированием клеток пациента в ИПСК, вводить в эти клетки индуцируемый малой молекулой ген каспазы-9 (IC9) для запуска каскадов апоптоза для самоубийства клеток образованных из этих ИПСК[185]. Такой «предохранитель» позволит избавляться от омоложённых клеток после того как они выполнили свою терапевтическую функцию или в случае образования опухоли из этих клеток[186][187][188][189][190].
Устойчивость к онкогенезу у ИПСК Голого землекопа
У голых землекопов уровень заболеваемости раком крайне низок по сравнению с другими млекопитающими. Обнаружено, что у ИПСК этого животного ослаблена способность к образованию тератом при трансплантации, что может быть связано[191]:
- с видоспецифической активацией супрессора опухоли ARF (Шаблон:Lang-en), который является продуктом альтернативной рамки считывания гена CDKN2A (другой продукт этого гена — маркер старения белок p16), а также
- с мутацией, приводящей к разрушению онкогена ERAS, являющегося аналогом Ras и отвечающего за онкогенность ЭСК.[192]
Более того, удалось найти сигнальный путь ASIS (Шаблон:Lang-en), с помощью которого вероятно удастся защитить ИПСК от возникновения из них опухолей.[191]
Эффективность перепрограммирования в ИПСК
До настоящего времени недостаточно понятно, почему эффективность перепрограммирования с помощью факторов транскрипции значительно ниже, чем при пересадке ядра в ооцит. Показано, что большинство фибробластов кожи взрослого человека начинают процесс перепрограммирования сразу после обработки трансгенами Яманаки (Oct4, Sox2, Klf4, и c-Myc). Помимо этих факторов в «коктейль» для репрограммирования можно также добавлять фактор CECR2 необходимый для преодоления эпигенетических барьеров во время репрограммирования.[193]
Тем не менее, только небольшая часть (~ 1 %) из этих «новоиспечённых» ИПСК образуют впоследствии колонии ИПСК[194]. Причиной, понижающего эффективность перепрограммирования, возврата большинства клеток к состоянию дифференцировки может быть:
- недостаточная деятельность активируемой цитидиндезаминазы (AID) из-за чего клетки не могут стабилизироваться и долго поддерживать состояние плюрипотенции[195].
- недостаточная активность гена SMC1 кодирующего один из белков когезина (необходимого для образования внутрихромосомной петли сближающей промоутер гена с последующим энхансером, что необходимо для активации эндогенных генов плюрипотентности), делает невозможным достижение плюрипотентности[196]
- важную роль на поздних этапах перепрограммирования играют и ферментативные модификации гистонов. В частности KDM4B-зависимая модификация H3K9me3 является барьером препятствующим репрограммированию клеток млекопитающих[197][198][199]. Показано, что необходимым условием эффективного перепрограммирования является подавление переносчика гистонов CAF-1[200] и белкового комплекса ремоделирования нуклеосом и деацетилирования (nucleosome remodeling and deacetylation — Шаблон:Iw. Избыточная экспрессия субъединицы NuRD, называемой Шаблон:Iw, ингибирует индукцию ИПСК. Причиной этого является деацетилирование комплексом NuRD лизина 27 в молекуле гистона Н3К27ac, что позволяет Поликомб Репрессорному комплексу 2 (PRC2) осуществить триметилирование лизина 27 в гистоне H3, приводящее, в конечном счёте, к ингибированию ряда генов-маркеров плюрипотентности[201] , в том числе генов Oct4 и Nanog. Ингибирование Mbd3, с другой стороны, повышает эффективность перепрограммирования и способствует образованию плюрипотентных стволовых клеток, которые способны генерировать жизнеспособных химерных мышей, даже в случае отсутствия с-Мус или Sox2[202]. Очевидно, Mbd3/NuRD исполняет роль эпигенетического регулятора, который ограничивает экспрессию ключевых генов плюрипотентности. Поэтому подавление Mbd3/NuRD (например, с помощью бутирата, вальпроевой кислоты, субероиланилидгидроксамовой кислоты или трихостатина А) может стать мощным средством для повышения эффективности и точности перепрограммирования. Действительно, подавив Mbd3 удалось впервые осуществить детерминированное и синхронизированное перепрограммирование клеток кожи мыши и человека в ИПСК в течение всего семи дней и с невиданной ранее эффективностью — около 100 %[203]
Найден фактор BRD3 (bromodomain-containing protein 3), который опознаёт «коды» ацетилированных гистонов в хромосоме, а также активирует большой набор митотических генов, повышая таким образом митотическую активность клетки. Этот фактор позволил более чем в 20 раз повысить эффективность выхода ИПСК, сократить длительность перепрограммирования до нескольких дней и повысить качество перепрограммирования[204]. Как отмечено выше повысить эффективность репрограммирования позволяет также замена с-Мус на H1foo[116]. В случае когда требуется репрограммировать клетки пожилых пациентов повысить эффективность позволяет ингибирование H3K79 гистон метилтрансферазы называемой DOT1L (Disruptor of telomeric silencing 1-like)[205]
Сконструирован супер-SOX2-17 транскрипционный фактор состоящий из факторов Sox2 и Sox17, который, будучи внесён в состав коктейлей усиливает перепрограммирование в сотни раз и позволяет перепрограммировать в ИПСК клетки пожилых людей, не поддававшиеся перепрограммированию[206].
Предлагается также для повышения генетической стабильности ИПСК помимо факторов Яманаки во время перепрограммирования клеток использовать также трансфекцию циклином D1 с целью повышения процессов репарации ДНК и уменьшения клеточного стресса[207].
Элитные клетки
В первичных после биопсии культурах клеток при перепрограммировании лишь очень немногие клетки способны превратиться в ИПСК, и тех из них, которые такой способностью обладают, называют «элитными» клетками. Учёные нашли способ получения таких элитных клеток из соматических с помощью фактора C/EBPα (CCAAT/enhancer binding protein-α). В первичной культуре мышиных В-клеток непродолжительная экспрессия C/EBPα с последующим перепрограммированием факторами Яманаки позволила добиться 100-кратного увеличения эффективности перепрограммирования в плюрипотентные клетки, причём с участием 95 % клеточной популяции[208][209]. Такие искусственно созданные элитные клетки очень похожи на белые кровяные прогениторные клетки-предшественники костного мозга, известные как миелобласты.
Замечено, что успешно репрограммируются те из фибробластов, которые имеют небольшой размер клетки и имеют более высокую способность к пролиферации. Их можно выявить и выделить по содержанию транскрипционного фактора SRF (Serum response factor)[210].
Дифференцировка ИПСК в зрелые клетки
В тератоме
Тот факт, что ИПСК человека способны к образованию тератом не только в теле человека, но и в организме некоторых животных, в частности в организме мыши или свиньи, позволил разработать метод дифференцировки ИПСК в условиях in vivo. Для этого ИПСК вводят, вместе с клетками индуцирующими направленную дифференцировку, генмодифицированной свинье или мыши, у которой подавлена активация иммунной системы на клетки человека, а затем, вырезав образовавшуюся тератому, выделяют из неё необходимые дифференцированные клетки человека,[211] используя моноклональные антитела к тканеспецифичным маркерам на поверхности полученных клеток. Этот метод был успешно использован для получения функциональных мышечных[212], а также миелоидных, лимфоидных и эритроидных клеток человека пригодных для трансплантации (пока только мышам). Таким образом, доказана возможность производства in vivo из клеток пациента необходимых ему дифференцированных клеток для трансплантации, изготовления антител или скрининга лекарственных средств[213][214]. Используя перевиваемую генмодифицированную тератому с гиперэкспрессией факторов Gfi1b, c-Fos и Gata2 можно неоднократно трансплантировать мышкам тератому и на протяжении длительного времени стабильно получать полностью функциональные мышиные гематопоэтические стволовые клетки[215]
Используя лектин rBC2LCN избирательно связывающий ИПСК[216][217], или же MitoBloCK-6[218] и /или PluriSIn #1 можно очистить полученные прогениторные клетки от плюрипотентных клеток образующих тератому. Тот факт, что дифференцировка проходит в условиях тератомы позволяет надеяться, что полученные клетки достаточно устойчивы к стимулам способным запустить их обратный переход к дедифференцированному (плюрипотентному) состоянию, а значит безопасны.[219] Беспокойство, однако, вызывает тот факт, что «воспитанные» в тератоме у животных человеческие клетки за время своего «воспитания», по всей вероятности, поглощают значительное количество экзосом[220] произведённых окружающими клетками организма носителя тератомы, а значит, попав в организм человека, могут повести себя неадекватно.
Методика основанная на обнаружении ген-репортёр-GFP-положительных клеток в тератоме, полученной из ИПСК, позволит идентифицировать и вырастить культуры ткани, используя индуцированные взрослые стволовые клетки различных типов, выделение которых ранее было затруднительно[221].
В организме животных-биоинкубаторов
Весьма перспективной средой для первоначальной дифференцировки ИПСК in vivo могут оказаться куриные эмбрионы[222]. Есть доказательства того, что микросреда этих эмбрионов оказывает антионкогенное действие на человеческие клетки и намного лучше чем условия in vitro[223]
Разработана технология «дозревания», полученных из ИПСК в условиях in vitro человеческих прогениторных клеток кардиомиоцитов, путём ксенотрансплантации их в организм новорождённых крыс, используемых в качестве in vivo биоинкубатора. Такое «дозревание» занимает ~6 недель[224]
См. также: Robert Lanza, Michael West (2013) Method for facilitating the production of differentiated cell types and tissues from embryonic and adult pluripotent and multipotent cells. Patent US 20130058900 A1
Получение клеток хрусталика и сетчатки глаза из ИПСК
В ближайшее время предполагается приступить к клиническим испытаниям, призванным продемонстрировать безопасность использования ИПСК для клеточной терапии людей с катарактой а также с возрастной дегенерацией жёлтого пятна — заболевания, которое повреждая сетчатку, может привести к слепоте[225]. Описаны методы получения из ИПСК клеток хрусталика[226] и сетчатки[227][228][229][230] и способы их использования для клеточной терапии[231][232][233], которая по крайней мере на 6 недель улучшала зрение у подопытных животных[234].
Получение из ИПСК лёгочных эпителиальных клеток
Хронические заболевания лёгких, такие как идиопатический фиброзирующий альвеолит, Силикоз, хроническая обструктивная болезнь лёгких и бронхиальная астма входят в число основных причин инвалидности и смертности. Поэтому исследователи ищут пути эффективной клеточной терапии и тканевой инженерии лёгких, которые бы позволили бороться с этими заболеваниями[235]. Были разработаны способы получения различных типов лёгочных клеток из ИПСК, которые могут быть взяты за основу для получения терапевтических клеток из материала, полученного от пациента.[236][237][238][239][240][241]
Получение нервных стволовых клеток человека из ИПСК
Юань и коллеги сообщили, что нервные стволовые клетки человека, индуцированные из ИПСК с помощью ретиноевой кислоты в бессывороточной среде имеют стабильный нейронный фенотип. После трансплантации крысам со смоделированным ишемическим инсультом, эти клетки не только выжили, но и мигрировали в зону ишемии мозга, где дифференцировались в зрелые нервные клетки, что оказало благотворное влияние на функциональное восстановление утраченных от повреждения в результате инсульта неврологических функций[242].
Получение стволовых клеток почки из ИПСК
Разработана система для быстрого (за 3 дня) и эффективного (70 %-80 % популяции) превращения ИПСК в клоны характерные для клеток почки с помощью ингибитора CHIR99021 и некоторых ростовых факторов[243]. Более того, удалось излечивать в опытах на мышах острые поражения почек, используя стволовые клетки почки, полученные из ИПСК[244].
Получение остеобластов из ИПСК
Известно что аденозин и его рецепторы, в частности A2bR играют важную роль в регенерации костных переломов[245][246]. Простое добавление в культуральную среду аденозина позволило превратить человеческие ИПСК в остеобласты. При трансплантации этих остеобластов мышке, с использованием макропористой синтетической матрицы, остеобласты полученные из ИПСК, участвовали в регенерации повреждений кости образуя новые ткани и стимулируя кальцификацию. При этом не наблюдалось образования тератом, что очевидно свидетельствует о 100 % дифференцировке клеток ИПСК в остеобласты[247].
Наивные плюрипотентные стволовые клетки (нПСК)
Человеческие плюрипотентные стволовые клетки, независимо от того, получены ли они из бластоцисты или являются результатом перепрограммирования соматических клеток, существенно отличаются от классических мышиных эмбриональных стволовых клеток и по мнению ряда исследователей представляют более позднюю стадию развития эпибласта[248][249]. Удалось получить нПСК у которых утеряна эпигенетическая «память» метилирования ДНК как гаметы (ооцита), так и человеческой бластоцисты. Такие клетки в отличие от ИПСК не имеют антиген SSEA4 (Stage Specific Embryonic Antigen 4)[250]. Перевести ЭСК и ИПСК человека в наивное состояние позволяет гиперэкспрессия фактора YAP (Yes-associated protein). Гиперэкспрессию YAP с получением наивного состояния можно также имитировать путём добавления к культуральной среде (лизофосфатидной кислоты (LPA), являющейся активатором YAP[251].
Репрограммирование человеческих ЭСК и ИПСК с помощью рекомбинантного, усечённого человеческого NME7 (найденного в семенниках фактора, содержащего два домена нуклеозид дифосфат киназы (Шаблон:Нп5) и способного связываться с расщеплённой формой трансмембранного рецептора MUC1, называемой MUC1*[252]) позволило получить стабильно наивные клетки, которые более пригодны для широкомасштабного клонирования и имеют расширенный потенциал дифференциации[253]. На основе таких клеток можно создать «фабрики клеток» для промышленного производства продукции необходимой для нужд клеточной терапии.
Перевести ИПСК в стабильно наивное состояние, подобное внутренней клеточной массе (ВКМ) человека перед имплантацией, позволяет инкубация в буфере LIF-3i состоящем из коктейля трёх малых молекул: XAV939 подавляющей сигнальный путь Wnt путём ингибирования танкиразы/PARP (поли(АДФ-рибоза)-полимеразы), CHIR99021 ингибирующей GSK3β и PD0325901 ингибирующей сигнальные пути MAPK/ERK[254][255]
Регион-селективные плюрипотентные стволовые клетки (рсПСК)
Ву и его коллеги обнаружили, что комбинация свободной от сыворотки среды, фактора роста фибробластов 2 (FGF2) и ингибитора сигнальных путей Wnt позволяет получить в результате устойчивую линию рсПСК (регион-селективных плюрипотентных стволовых клеток, по англ rsPSCs) клеток человека. По транскриптому эти клетки напоминали таковые из задних клеток раннего эмбриона мыши. Трансплантация этих клеток в 7,5-дневные эмбрионы мыши привела к их эффективному включению в задний, но не в другие части эмбриона. После 36 часов культивирования этих химерных эмбрионов, клетки рсПСК проявили способность к пролиферации и способность к дифференцировке в ткани трёх зародышевых листков. Хотя исследователи остановили дальнейшую дифференцировку этих клеток, предполагается, что каждый из образованных этими клетками зародышевых листков способен дать начало определённым тканям и органам[256][257]. В отличие от других человеческих стволовых клеток, которые, как правило, не удаётся интегрировать в эмбрион мыши, человеческие rsPSCs способны к такой интеграции и к развитию в ранние стадии тканей человека[258].
Клетки F класса
Клетки F класса в отличие от ИПСК не способны включаться в ткани организма и участвовать в построении химерного организма. Тем не менее они удовлетворяют другому тесту на плюрипотентность — способны образовывать тератомы. По сравнению с обычными стволовыми клетками подобными эмбриональным и ИПСК,клетки F-типа растут в лаборатории быстрее и их выращивать проще и дешевле — их можно просто поместить в большой сосуд с питательной средой и вырастить за несколько дней или часов, а не за несколько недель как обычные ИПСК[259][260].
Индуцированные прогениторные стволовые клетки
Методы прямой трансдифференцировки
В связи с тем, что использование ИПСК для клеточной терапии сопряжено с большим риском опухолей и рака, необходима разработка методов получения более безопасных клеточных линий, пригодных для применения в клинике. Альтернативой методам ИПСК стала техника так называемого «прямого репрограммирования», то есть индуцируемой определёнными факторами прямой трансдифференцировки, без предварительного прохождения клеток через стадии плюрипотентного состояния[261][262][263][264][265][266]. Основу для такого подхода заложили исследования Тейлор и Джонса (Taylor and Jones), показавших, что воздействие 5-азацитидина — реактива, вызывающего деметилирование ДНК — на бессмертную линию клеток мышиных эмбриональных фибробластов способно вызвать образование миогенных, хондрогенных и адипогенных клонов[267] и Вейнтрауба с соавторами, обнаруживших, что для репрограммирования достаточно активации всего одного гена, позднее названного MyoD1[268][269][270]. По сравнению с ИПСК, для получения которых требуются не менее двух недель, образование индуцированных прогениторных клеток происходит сравнительно быстро — иногда за несколько дней. Эффективность перепрограммирования также обычно во много раз выше. Для этого перепрограммирования не всегда требуется деление клетки[271]. Но главное, это то, что получаемые в результате перепрограммирования мультипотентные соматические стволовые клетки более пригодны для клеточной терапии, так как не образуют тератомы[272][273]. Это очевидно связано с тем что при прямой трансдифференцировке в получаемых клетках сохраняются признаки старения исходных клеток.[274] См. также обзоры[275][276]
Трансдифференцировка с помощью 5-азацитидина и тромбоцитарного фактора роста
Разработан метод получения, так называемых, индуцированных мультипотентных стволовых клеток (ИМПСК) путём непродолжительной обработки постнатальных стволовых клеток костного мозга и жировых клеток комбинацией фактора роста (тромбоцитарный фактор роста — АВ (PDGF-AB)) и 5-азацитидина. Авторы этого исследования утверждают, что: «В отличие от первичных мезенхимальных стволовых клеток, которые хотя и используются в клинической практике для содействия восстановлению тканей, но не способны сами включаться в эту ткань, ИМПСК способны к непосредственному участию процессах регенерации тканей и при этом не образуют опухолей», в связи с чем «могут быть использованы для регенерации различных тканей»[277][278][279]
Трансдифференцировка зрелых клеток всего одним фактором транскрипции
Особенностью нематоды Caenorhabditis elegans является настолько жёсткая программа развития, что соматическая клетка, находящаяся в определённом участке организма, как правило, имеет одинаковую родословную у всех особей.[280] При этом зрелые клетки, в отличие от ранних эмбриональных клеток, обычно очень устойчивы к изменению их фенотипа. Тем не менее, обнаружено, что как у интактных личинок, так и у неповреждённых взрослых нематод краткосрочный синтез всего одного фактора транскрипции, а именно фактора ELT-7 Шаблон:Iw[281] может превратить фенотип полностью дифференцированной, высокоспециализированной не-энтодермальной клетки фаринкса (глотки) в фенотип полностью дифференцированной энтодермальной клетки кишечника. Это превращение происходит «в одну стадию» — путём прямой трансдифференцировки, без каких-либо промежуточных стадий дедифференцировки[282][283].
Трансдифференцировка с помощью CRISPR-опосредованного активатора
Фенотип клетки можно изменять с помощью en (Epigenome editing). Например, путём активации определённых эндогенных генов, используя для этого CRISPR — опосредованный активатор. Если соединить домен dCas9 (который изменён таким образом, что он больше не режет ДНК, но все ещё может находить и связываться с конкретными последовательностями ДНК) с активатором транскрипции (таким как p65HSF1[284]), то можно с большой точностью изменять эндогенную экспрессию конкретных генов. Например, активируя только один эндогенный ген Sox2 или Oct4 удалось получить из фибробластов мыши ИПСК с выходом в 0,1 %[285][286]. Пользуясь подобным методом, Вэй и др. усиливали экспрессию эндогенных генов Cdx2 и Gata6, воздействуя на них с помощью CRISPR-опосредованных активаторов, и таким образом, сумели осуществить прямое репрограммирование мышиных эмбриональных стволовых клеток в две внезародышевые линии, а именно в типичные трофобласты и клетки внеэмбриональной энтодермы[287]. Аналогичным образом активация эндогенных генов Brn2, Ascl1, и Myt1l позволила преобразовать эмбриональные фибробласты в индуцированные нервные клетки[288].
Перепрограммирование путём поэтапного моделирования процессов регенерации
Ещё один способ перепрограммирования заключается в поэтапном моделировании на скелетной мышце млекопитающих процессов, которые происходят у амфибий при регенерации конечности. Таким образом, с помощью химических веществ: миосеверина (myoseverin), реверсина (2-(4-морфолиноанилино)-6-циклогексиламинопурина) и некоторых других веществ, в условиях культуры мышечных клеток млекопитающих, которые, как известно, не способны регенерировать конечности, удалось индуцировать процессы аналогичные тем которые протекают при регенерации конечностей у амфибий и получить предшественники мышечных, костных, жировых и нервных клеток[289][290][291].
Получение ИПСК и трансдифференцировка с помощью антител
Обнаружены моноклональные антитела, способные преобразовывать стволовые клетки костного мозга непосредственно в прогениторные клетки нейронов головного мозга[292][293].
Для этой трансдифференцировки как оказалось достаточно всего одного белка — антитела имитирующего фактор Шаблон:Iw. Для поиска подобных антител используется специальный метод селекции антител[294].
Идентифицированы антитела, которые могут во время перепрограммирования эмбриональных фибробластов мыши в ИПСК соответственно заменить три из четырёх факторов перепрограммирования Sox2, c-Myc или Oct4. Найти замену четвёртому фактору Klf4 пока не удалось. Более того Sox2-замещающее антитело действуя как антагонист к связанному с мембраной белку Basp1, тем самым активирует подавленные им ядерные факторы WT1, Esrrb и Lin28a (Lin28) независимо от Sox2[295][296].
Перепрограммирование бактериями
Желудочно-кишечный тракт человека колонизирован обширным сообществом бактерий симбионтов и комменсалов. Исследователи продемонстрировали феномен перепрограммирования соматических клеток бактериями и выработку мультипотентных клеток из клеток кожи человека, под воздействием молочнокислых бактерий[297]. Выяснилось, что подобная клеточная трансдифференцировка вызвана рибосомами и «может произойти под воздействием бактерий, которые проглатываются и перевариваются клетками-хозяевами, что приводит к стрессу от попадания чужеродных рибосом и стимулирует клеточную пластичность».[298]
Условно перепрограммированные клетки (УПК)
Ричард Шлегель и его исследовательская группа разработали метод[299][300], который позволяет размножать in vitro культуру клеток похожих на взрослые стволовые клетки, без каких-либо генетических манипуляций. Они показали, что под воздействием облучённых фибробластов (см. обзоры[301] и[302]) и ингибиторов Rho киназы, таких как: Y-27632[303][304] или фасудил[305], первичные эпителиальные клетки млекопитающих переходят к состоянию неограниченной пролиферации[306] (что, по мнению авторов, связано с ростом концентрации β-катенина в ядре и снижением Notch сигнализации). Индукция УПК происходит довольно быстро (в течение 2 дней) и является результатом «перепрограммирования» всей клеточной популяции, а не одной из её субпопуляций. При этом в УПК не наблюдалась характерная для ИПСК или эмбриональных стволовых клеток (ЭСК) активация синтеза Sox2, Oct4, Nanog, и Klf4. Эта индукция УПК обратима — достаточно удалить Y-27632 и облучённые фибробласты, чтобы клетки перешли к обычной дифференцировке[307][308][309]. Обнаружено, что факторы, вызывающие индукцию условно перепрограммированных клеток, переходят из «питающих» клеток подложки в культуральную среду в результате обусловленного радиацией апоптоза этих клеток.[310] Этот метод может иметь большое будущее в регенеративной медицине, так как эти клетки в отличие от ИПСК не образуют опухоли[311][312]. Так, например, используя технологию условно-перепрограммированных клеток, исследователи смогли найти эффективную терапию для пациента с редким типом опухоли лёгких[313].
Иной подход к получению условно перепрограммированных клеток заключается в ингибировании мембранного белка CD47, являющегося рецептором тромбоспондина-1. Показано, что потеря CD47 снимает запрет на устойчивую пролиферацию первичных мышиных эндотелиальных клеток, повышая частоту их асимметричного деления, а также позволяет этим клеткам спонтанно перепрограммироваться в мультипотентные клетки формирующие Шаблон:Iw. Нокдаун гена CD47 резко увеличивает в клетках уровни мРНК с-Мус и других факторов перепрограммирования Яманаки как in vitro, так и in vivo. Очевидно, тромбоспондин-1 является ключевым сигналом нишы, который подавляет способность стволовых клеток к самообновлению влияя на них через CD47. Поэтому антагонисты CD47 могут активировать самообновление и перепрограммирование клеток выключая механизмы негативной регуляции с-Мус и других факторов транскрипции стволовых клеток[314] По мнению авторов исследования, образующиеся при этом мультипотентные клетки не образуют тератом.
In vivo блокада CD47 с помощью антисмыслового морфолино повышает выживаемость мышей, тело которых подверглось воздействию летальной дозы облучения. Эта устойчивость к радиации обусловлена увеличением пролиферативной способности клеток крови, образующихся из костного мозга, и активации защитной аутофагии радиочувствительных желудочно-кишечных тканей.[315]
Косвенное перепрограммирование клеток (ILC)
Разработан метод при котором соматические клетки переходят в промежуточное пластическое состояние- частично перепрограммированные ИПСК (pre-iPSC), индуцированное кратковременным воздействием перепрограммирующих факторов, а затем дифференцируются с помощью специально разработанной химической среды (искусственной ниши).[316] Предполагается, что этот новый метод может быть более эффективным и безопасным, так как он, по мнению его авторов, не вызывает опухоли или другие нежелательные генетические изменения, и при этом позволяет получать требуемые клетки быстрее и c гораздо большим выходом по сравнению с другими методами. Тем не менее, безопасность этих клеток все же сомнительна — учитывая то, что преобразование из пре-ИПСК опирается на использование условий перепрограммирования в ИПСК, и нельзя исключить что часть клеток может все же приобрести плюрипотентные свойства(если они не прекратят процесса де-дифференцировки in vitro или в связи с дальнейшей де-дифференцировкой in vivo).
Перепрограммирование воздействием на гликопротеин наружней мембраны
Общей особенностью, взятых из разных источников, плюрипотентных стволовых клеток, отличающей их от большинства (исключение составляют лейкоциты) неплюрипотентных клеток, является особый характер гликозилирования белков их наружней мембраны[317]. Расположенные на поверхности стволовых клеток гликаны быстро реагируют на изменения в состоянии клетки и поэтому идеально подходят в качестве маркеров для выявления изменений в клеточных популяциях. Многие широко используемые Шаблон:Iw (в том числе Шаблон:Iw, SSEA-4, TRA 1-60, и Тра 1-81.) являются гликанами клеточной поверхности[318]. Так, например, гликопротеин подокаликсин (podocalyxin) расположен исключительно только на недифференцированных клетках человека (ИПСК и ЭСК), но не на поверхности дифференцированных соматических клеток, что позволяет отделить эти клетки с помощью лектина BC2L-C из Burkholderia cenocepacia (rBC2LCN).[319] Suila Хели и соавторы[320] полагают, что у стволовых клеток человека внеклеточные о-GlcNAc и о-LacNAc, выполняют решающую роль в тонкой настройке Шаблон:Iw — высококонсервативной системы клеточной сигнализации, от которой зависят судьбы стволовых клеток, их дифференцировка, лево- и правосторонняя асимметрия, апоптоз, и пролиферация (см. обзоры:[321][322])
Очевидно, изменения характера гликозилирования белков наружней мембраны являются маркерами состояния клетки каким-то образом связанными с плюрипотенцией и дифференцировкой[323]. Причём «сдвиг» в характере гликозилирования, по всей видимости, это не просто результат инициализации экспрессии генов, а механизм играющий роль важного регулятора группы генов, вовлечённых в приобретении и поддержании недифференцированного состояния[324]. Так, показано, что активация гликопротеина ACA[325], связывающего гликозилфосфатидилинозитол на поверхности прогениторных клеток периферической крови человека, посредством сигнального каскада PI3K/Akt/mTor/PTEN индуцирует повышение экспрессии генов Wnt, Notch1, Bmi-1 и HoxB4, а также способствует образованию и самообновлению популяции гемопоэтических стволовых клеток[326]. Более того показано, что индуцируемая посредством ACA-зависимого сигнального пути дедифференцировка прогениторных клеток, приводит к образованию ACA-индуцированных плюрипотентных стволовых клеток, способных дифференцироваться in vitro в клетки всех трёх зародышевых листков.[327]. Изучение избирательно связывающих гликопротеины лектинов, на предмет их способности поддерживать культуру плюрипотентных стволовых клеток человека, привело к открытию лектина эритрина кристагалли (Erythrina Cristagalli — ЕСА) способного служить в качестве простой и высокоэффективной матрицы для культивации человеческих плюрипотентных стволовых клеток[328]
Перепрограммирование с помощью протеогликана
Альтернативной стратегией превращения соматических клеток в плюрипотентные состояния может быть непрерывная стимуляция фибробластов одним из протеогликанов ECM, а именно фибромодулином[329]. Такие клетки проявляют способность к регенерации скелетных мышц с заметно меньшим онкогенным риском по сравнению с ИПСК[330]. Пониженная онкогенность таких клеток связана с активацией CDKN2B (ингибитора циклин-зависимой киназы 2B) во время процесса перепрограммирования рекомбинантным человеческим фибромодулином[331].
Индуцированные стрессом стволовые клетки (ИССК)
Клетки STAP (Stimulus-triggered acquisition of pluripotency)
В 2014 году группа японских исследователей опубликовала в статью в журнале Nature[332], где было заявлено открытие нового способа быстрого перепрограммирования соматических клеток млекопитающих в плюрипотентные клетки — так называемые клетки Шаблон:Iw в ответ на действие сильных внешних раздражителей, таких как временное повышение кислотности окружающей среды. Однако другим исследователям не удалось воспроизвести эти результаты. Впоследствии материал о клетках STAP был отозван журналом Nature как ошибочный[333], один из соавторов работы покончил жизнь самоубийством[334], а сами работы по этому направлению были прекращены[335].
Перепрограммирование индуцированное физическим воздействием
Плюрипотентные клетки содержат E-кадгерин, который при дифференцировке заменяется на N-кадгерин. Уникальной особенностью Е-кадгерина, помимо того, что он ответственен за межклеточную адгезию, является способность регулировать сигнальные пути клетки и заменять фактор Oct4 при индукции плюрипотентности[336]. Фибробласты в которых подавлен синтез E-кадгерина не могут перепрограммироваться. Во время перепрограммирования, N-кадгерин может заменять функции E-кадгерина, что предположительно указывает на необходимость адгезии для перепрограммирования[337]. Однако, согласно Гуаньнань Су с соавт., формирование в культуре клеток 3D сфер, в связи с вынужденным ростом клеток на поверхности с низкой связывающей способностью, иногда приводит к репрограммированию клеток. В качестве примера они показали, что нервные клетки-предшественники могут быть получены непосредственно из фибробластов путём физического воздействия, без введения экзогенных перепрограммирующих факторов.[338] Ранее подобные сферы были получены в опытах с фибробластами мыши с мутацией инактивирующей ген-супрессор опухолей ретинобластомы — RB1[339], белка без которого клетки теряют способность к старым контактам и контактному ингибированию пролиферации в результате чего выходят за пределы колонии и образуют сферы где доминируют новые межклеточные контакты, по всей видимости, и вызывающие самопроизвольное перепрограммирование в тератомоподобные стволовые клетки[340].
В биореакторной культуре сдвиг жидкости при перемешивании индуцирует повышенную экспрессию генов маркеров плюрипотентности, которую можно подавить ингибируя β-катенин или винкулин.[341]
Физические сигналы, в виде параллельных микродорожек на поверхности подложки для культивации клеток, могут заменить действие низкомолекулярных эпигенетических модификаторов и значительно повысить эффективность перепрограммирования. Механизм основан на механомодуляции изменяющей морфологию и эпигенетическое состояние клеток. В частности, по мнению авторов исследования: «снижение активности гистоновой дезацетилазы и повышение экспрессии WD повторяющего домена 5 (WDR5)-субъединицы H3 метилтрансферазы вызванное поверхностью с микродорожками приводит к увеличению ацетилирования и метилирования гистона Н3». Аналогичное действие на клетки оказывали нановолоконные подложки с выровненной ориентацией волокон[342].
Важным биофизическим фактором влияющим на дифференцировку клеток является жёсткость подложки. Например, мягкие субстраты способствуют образованию из ЭСК, по Шаблон:Iw-зависимому пути, нейроэпителиальных клеток, в то же время предотвращают дифференцировку в клетки нервного гребня. Исследования показали, что в этом механизме задействованы механочувствительное Smad фосфорилирование и ядерно-цитоплазматические перемещения, зависящие от регулируемой жёсткостью подложки активности Шаблон:Iw/Шаблон:Iw и сократительной способности комплекса актомиозин-цитоскелет[343].
Помогает клетке преобразовывать механические раздражители в электрические и биохимические сигналы белок регулирующий открытие ионного канала Са++ названный Пьезо1 (Piezo1), который активируется натяжением мембраны. В зависимости от липидного состава мембран придающего ей жёсткость или мягкость меняется и способность Пьезо реагировать на механические стимулы[344]
Механизмы механомодуляции см. в обзорах:[345][346][347]
Разработан метод, который превращает соматические клетки в стволовые клетки «сжимая» их с помощью 3D микроокружения состоящего из специально подобранного геля, что открывает путь для крупномасштабного производства стволовых клеток для медицинских целей[348][349].
Как отмечено выше, в процессе перепрограммирования клетки морфологически изменяются, что приводит к изменению их способности к адгезии. Эти характерные различия в адгезии позволили разработать процесс выделения плюрипотентных стволовых клеток с помощью микрожидкостныхустройств[350]. Преимуществом этого метода является то что: разделение занимает менее 10 минут, при этом удаётся получить более чем на 95 % чистую культуру ИПСК клеток, причём выживаемость клеток больше 80 % и полученные клетки сохраняют нормальные транскрипционный профиль, потенциал дифференцировки и кариотип.
Индуцированные нервные стволовые клетки (иНСК)
Центральная нервная система млекопитающих имеет крайне ограниченные возможности для регенерации. Поэтому для лечения многих нервных расстройств (таких как: инсульт, болезнь Паркинсона, болезнь Альцгеймера, боковой амиотрофический склероз и т. д.) требуются нервные стволовые клетки, автологичным источником которых могут стать иНСК пациента. В ряде новейших публикаций описано прямое преобразование соматических клеток в индуцированные нервные стволовые клетки[264][266][265][351].
Так, например, предшественники нервных клеток можно получить прямым преобразованием и без введения экзогенных транскрипционных факторов, пользуясь только химическим коктейлем[352]. Эти клетки, называемые ciNPCs (chemical-induced neural progenitor cells) можно к примеру получить из фибробластов кончика хвоста мыши или мочевыводящих соматических клеток человека, используя для этого коктейль состоящий из:
- ингибитора HDAC (в качестве такового можно использовать либо вальпроевую кислоту), либо бутират натрия, либо трихостатин А;
- ингибитора Шаблон:Iw (в качестве такового можно использовать либо CHIR99021, либо карбонат или хлорид лития);
- ингибитора сигнальных путей TGF бета (либо RepSox, либо Шаблон:Iw, либо Шаблон:Iw) и поместив клетки в условия гипоксии[353].
Аналогичным образом без введения экзогенных транскрипционных факторов, пользуясь только химическим коктейлем можно получить Шванновские клетки[354]. По некоторым данным, в принципе, возможно, преобразовать трансплантированные в мозг мыши фибробласты и астроциты человека, спроектированные методами генной инженерии на выработку факторов (Ascl11, Brn2a и Myt1l) индуцирующих их перепрограммирование в нейроны, активируя после трансплантации соответствующие гены с помощью активатора добавленного к питьевой воде животных.[355] Было также показано, что in situ эндогенные астроциты мыши могут быть напрямую преобразованы в функциональные нейроны[355], способные участвовать в формировании нейросетей[356]. В отличие от ИПСК, полученные таким образом клетки не пролиферируют, а значит более безопасны. Наблюдения за подвергшимися этой процедуре мышами в течение года, не выявили у них признаков образования опухоли. Те же исследователи превратили астроциты спинного мозга в прогениторные клетки, называемые нейробластами, которые способны дифференцироваться в нейроны при поврежденнии спинного мозга[357]. В то время как нейроны взрослого человека обычно не в состоянии регенерировать после травмы спинного мозга, нейроны, полученные из человеческих ИПСК, после трансплантации крысам с травмами спинного мозга продемонстрировали значительный рост по всей длине центральной нервной системы животных. В эксперименте были использованы ИПСК полученные из клеток кожи, взятых от 86-летнего мужчины. Авторы исследования продемонстрировали, что полученные из ИПСК омоложённые нейроны способны прожить в костном мозге крысы не менее трёх месяцев и в течение этого срока не образовывали опухолей. Однако, такая клеточная терапия не привела к излечению крысы от паралича.[358]
Inoue и его коллеги трансплантировали глиальные нервные клетки-предшественники, полученные из человеческих иПСК в поясничный отдел спинного мозга мышей с моделью бокового амиотрофического склероза (БАС). Трансплантированные клетки дифференцировались в астроциты и продлевали жизнь мышей с БАС. Очевидно ИПСК могут стать перспективным ресурсом для трансплантационной терапии БАС.[359]
Разработана технология для прямого преобразование фибробластов в функциональные астроциты с помощью транскрипционных факторов NFIA (Nuclear factor 1 A), NFIB (Nuclear factor 1 B) и SOX9[360]
Как показано в обзоре Бельмонто с соавт. способы прямого преобразования соматических клеток в индуцированные нервные стволовые клетки отличаются по своим методическим подходам[361]. Какой из этих подходов окажется наиболее приемлемым для клиники покажут исследования.
Прогениторные клетки олигодендроцитов (ПКОД)
Без миелиновой оболочки, выполняющей роль изоляции волокон нейронной сети, сигналы посланные по нервам быстро затухают. Поэтому при заболеваниях, связанных с потерей миелиновой оболочки, таких как рассеянный склероз, наблюдается снижение интеллекта, парез, атаксия туловища и конечностей, нарушения зрения, потеря чувствительности и ряд других неврологических симптомов. Перспективным подходом к лечению подобных заболеваний является трансплантация клеток-предшественников олигодендроцитов (ПКОД), способных заново создать миелиновую оболочку вокруг поражённых нервных клеток. Для такой терапии необходимо иметь доступный источник этих клеток. Основу для решения этой проблемы заложил метод прямого преобразования фибробластов мышей и крыс в олигодендроглиальные стволовые клетки индуцированного путём принудительной гиперэкспрессии восьми[362] или всего трёх транскрипционных факторов Sox10, Olig2 и Zfp536.[363] Показано, что аутологичная клеточная терапия с использованием полученных in vitro из ИПСК пациента клеток-предшественниц олигодендроцитов приводит к миелинизации in vivo, что свидетельствует о функциональности этих человеческих клеток в организме мыши и об открывшейся перспективе их использования в клинике.[364]
Индуцированные кардиомиоциты (иКМ)
Одной из наиболее актуальных задач клинической науки нынешнего столетия является развитие терапевтических стратегий, способных обратить вспять прогрессирование сердечной недостаточности — основной причины инвалидности и смертности населения. Большие надежды в этом плане возлагаются на методы клеточной терапии, которые могли бы предотвратить образование соединительной рубцовой ткани вместо мышечной. Простейшим подходом к решению этой задачи могло бы быть перепрограммирование сердечных фибробластов непосредственно в организме путём доставки в сердце факторов транскрипции[261] или микроРНК[17][365]. Была предпринята попытка перепрограммировать сердечные фибробласты в кардиомиоцит-подобные клетки in vivo путём гиперэкспрессии в них факторов транскрипции Gata4, Mef2c и Tbx5 (GMT)[261]. В случае удачи, такой поход позволил бы превращать рубцовую ткань в мышечную непосредственно в сердце, без необходимости клеточной трансплантации. Эффективность такого перепрограммирования оказалась очень низкой, а фенотип полученных кардиомиоцитов существенно отличался от фенотипа нормальных зрелых кардиомиоцитов. Результатом чего явилась низкая выживаемость перепрограммированных клеток[366]. Позднее в опытах in vitro фенотип удалось несколько исправить (добавлением ESRRG, MESP1, Myocardin, ZFPM2 и TGF-β), но эффективность перепрограммирования осталась низкой[367]. Поднять эффективность перепрограммирования in vivo позволяют неинтегрирующиеся векторы вируса Сендай, с вектором факторов перепрограммирования Gata4, Mef2c, и Tbx5[368]
Определённые успехи наметились в методах получения и выращивания большого количества кардиомиоцитов in vitro[369][370][371]. Так, например, удалось с высокой степенью эффективности получить из ИПСК человека прогениторные сердечные клетки способные, при трансплантации их в сердечную мышцу, снизить её перерождение в рубцовую ткань после инфаркта[372]. С помощью малых молекул и путём активации синтеза β-катенина или же ингибирования синтеза Wnt в ИПСК человека in vitro, удалось повысить эффективность получения кардиомиоцитов до 80 %[373].
Возможно, что в будущем удастся заменить искусственные электрокардиостимуляторы, необходимые людям с медленным или нерегулярным сердцебиением, на биологический кардиостимулятор (пейсмекер) из индуцированных стволовых клеток. Надежду на это вселяют эксперименты в которых поросятам делали инъекцию индуцированных сердечных клеток, способных синхронизировать ритм сердцебиения[374]. Более того, при ишемической кардиомиопатии, вызванной смоделированным на мышах инфарктом миокарда, трансплантация ИПСК способствовала синхронизации повреждённых желудочков сердца, улучшая их проводимость и сократимость за счёт активации процессов восстановления[375]. Перепрограммированием соматических клеток in vivo с помощью эмбрионального фактора транскрипции Шаблон:Iw можно преобразовать кардиомиоциты в клетки пейсмекера. Это открытие открывает возможность легко и быстро вылечить пациентов зависящих от кардиостимулятора. Перенос гена TBX18 In situ с помощью инъекции его аденовирусного носителя позволяет создать в месте инъекции естественный источник биологического водителя ритма уже через 2-3 дня после введения. При этом пока не наблюдалось возникновения опухолей или каких-либо нарушений в деятельности сердца. Таким образом, минимально инвазивный перенос генов TBX18 может рассматриваться как перспективный метод лечения больных с блокадой сердца, который в будущем, очевидно, заменит лечение искусственными кардиостимуляторами.[376]
Создан коктейль для прямой (без прохождения через плюрипотентное состояние) трансдифференцировки, состоящий из четырёх низкомолекулярных компонентов (SB431542 (ингибитора ALK4/5/7), CHIR99021 (ингибитора GSK3), парната (ингибитора LSD1/KDM1, называемого также транилципромином), и форсколина (активатора аденилатциклазы)). Этот коктейль позволил с высокой эффективностью превратить фибробласты мыши в клетки сердечной мышцы с помощью всего одного фактора транскрипции — Oct4. Полученные таким способом индуцированные кардиомиоциты спонтанно сокращались[377]. Методом прямой трансдифференциации без использования генетических векторов, то есть чисто фармакологически, с помощью коктейля из девяти компонентов, удалось получить с выходом 97 % из фибробластов кожи бьющиеся химически индуцированные кардиомиоцит-подобные клетки (ciCMs), которые почти не отличались от человеческих кардиомиоцитов по данным исследования их транскриптома, эпигенетически и по электрофизиологическим параметрам. Более того, при трансплантации в сердце мыши с инфарктом, обработанные этим коктейлем фибробласты превращались в выглядевшие здоровыми клетки сердечной мышцы[378][379]. Предпринята успешная попытка противостоять постинфарктному фиброзу (перерождению сердечной мышцы в соединительную ткань с образованием рубца) с помощью химического перепрограммирования in vivo сердечных фибробластов в кардиомиоциты.[380]
Лу с соавторами[381] создали биоинженерную конструкцию сердца путём заселения очищенного от клеток (децеллюларизованного) сердца мыши мультипотентными сердечно-сосудистыми прогениторными клетками, полученными из ИПСК человека. Они обнаружили, что мультипотентные сердечно-сосудистые прогениторные клетки направленно мигрируют в соответствии с архитектурой сердца, а прибыв на место, размножаются и дифференцируются в кардиомиоциты, клетки гладких мышц и эндотелиальные клетки, как это необходимо для восстановления утраченной структуры сердца. Очевидно, что внеклеточный матрикс сердца мыши (оставшаяся после удаления клеток мыши подложка сердца) может посылать сигналы мультипотентным сердечно-сосудистым прогениторным клеткам человека, необходимые для их навигации и превращения в специализированные клетки, обеспечивающие нормальную работу сердца. Через 20 дней после перфузии сердца средой содержащей факторы роста, оно, после электростимуляции, начинало биться с темпом 40-50 ударов в минуту и реагировало на медикаменты.[382]
Подробнее в обзорах:[383][384]
Созревание кардиомиоцитов in vivo
Кардиомиоциты получаемые из ИПСК отличаются от взрослых соматических клеток и остаются незрелыми при культивировании в чашках Петри. Японским учёным удалось добиться созревания этих клеток. Для этого они на месяц поместили незрелылые клетки кардиомиоцитов в сердце новорождённой мыши для дозревания[385].
Омоложение мышечных стволовых клеток
Пожилые люди нередко страдают от прогрессирующей дистрофии и слабости мышц, что отчасти связано с повышенной активностью сигнальных путей p38α и p38β митоген-активированных протеин киназ в стареющих мышечных стволовых клетках. Подвергнув такие стволовые клетки непродолжительному воздействию SB202190 — ингибитора p38α и p38β — в сочетании с культивированием на мягкой подложке из гидрогеля, можно быстро омолодить их и размножить. Более того, после имплантации в организм такие омоложённые клетки способны повысить силу старых мышц[386]. Восстановить способность сателлитных стволовых клеток к регенерации можно и подавив синтез на гене Шаблон:Iw (называемом также Cdkn2a)[387].
Миогенные предшественники, которые могут быть использованы для моделирования болезней или клеточной терапии скелетных мышц, могут быть также получены непосредственно из ИПСК с помощью свободно-плавающей шаровой культуры (EZ сфер) в культуральной среде, содержащей высокие концентрации (100 нг / мл) фактора роста фибробластов-2 (FGF-2) и эпидермального фактора роста.[388] Шаблон:Внешние медиафайлы
Индуцированные гепатоциты
Получение клеток печени из ИПСК
Гепатоциты человека имеют очень ограниченную способность к восстановлению после повреждений печени. Поэтому трансплантация печени нередко является единственным способом лечения таких болезней как цирроз. Клеточная терапия печени затрудняется тем, что культура гепатоцитов плохо размножается in vitro.[389] Поэтому удобнее размножить клетки в виде ИПСК, и только затем превратить их в гепатоциты.[390] Разработано несколько способов получения гепатоцитов из ИПСК[391][392][393][394][395][396][397][398][399] Так, например для очистки и размножения самообновляющихся гепатобласт-подобных клеток из человеческих плюрипотентных стволовых клеток (ЭСК/ИПСК), их культивировали на чашках покрытых человеческим ламинином-111 в течение более 3 месяцев, после чего они подобно овальным клеткам печени были способны дифференцироваться в гепатоцит-подобные клетки, а также в клетки жёлчных путей — холангиоцит-подобные клетки. Было показано, что такие гепатобласт-подобные клетки могут интегрироваться в паренхиму печени мыши. Предполагается, что, благодаря подавлению неблагоприятных генных регуляторных сетей при культивировании на поверхности покрытой ламинином, гепатоциты имеют большое сходстве со взрослыми гепатоцитами и могут быть использованы для скрининга лекарственных средств, а также в качестве источника клеток для регенеративной терапии печени[400][401].
В 2010 году была продемонстрирована возможность индуцировать полученные из жировой ткани стромальные клетки (ASC) в клетки похожие по ряду функций на гепатоциты человека, способные прижиться в повреждённой токсинами печени мыши[402][403]. Позднее был разработан быстрый (до десяти дней) и эффективный (с выходом более 50 процентов) способ превращать клетки полученные путём липосакции в клетки печени. Клетки, полученные из собственных клеток человека с помощью этой новой методики, превращаются в клетки печени без промежуточной фазы плюрипотентных клеток и, очевидно, не образуют опухоли. В печени они формируют многоклеточные структуры необходимые для образование жёлчных протоков. Особенностью этой методики является культивирование адипоцитов в жидкой суспензии, в которой они образуют сфероиды[404]
Обнаруженная у совместной культуры гепатоцитов, полученных из ИПСК, с эндотелиальными (для образования сосудов) и мезенхимальными (для образования поддерживающего внеклеточного матрикса[405][406]) клетками, способность к самоорганизации (самосборке) в трёхмерные шарообразные структуры, представляющие собой зачаток печени[407] позволяет надеяться, что в будущем трансплантологам: не надо будет искать и ждать донора, больному будут пересаживать зачаток нужного органа, полученный из его же собственных клеток, и этот зачаток будет уже на месте дорастать до нужных размеров.[408] Эта методика позволяет использовать клетки всего одной мыши для предварительной проверки 1.000 лекарственных препаратов на их пригодность для лечения болезней печени, что открывает новые возможности для медицинских исследований и проверки безопасности лекарств[409].
Методы получения гепатоцитов без использования ИПСК
Для получения гепатоцитов из человеческих фибробластов не обязательно вначале получить ИПСК. Используя небольшие молекулы можно добиться прямого перехода фибробластов в индуцированные мультипотентные прогениторные клетки (iMPC) из которых затем образуются сначала прогениторные клетки эндодермы, а затем гепатоциты. После трансплантации мышкам с иммунодефицитом и смоделированным поражением печени, клетки iMPC интенсивно размножаются и приобретают функциональные способности характерные для взрослых гепатоцитов. При этом не наблюдалось образование опухолей, потому что клетки не проходили через стадию плюрипотентного состояния[410]. С помощью инфицирования лентивирусами, вызывающими экспрессию генов Шаблон:Iw, Шаблон:Iw и HNF4A, удалось осуществить прямое преобразование фибробластов человека во взрослые гепатоцито-подобные клетки, которые могут быть размножены в культуре, а затем использованы для лечения острой печёночной недостаточности и метаболической болезни печени.[411].
Инактивация сигнального пути Hippo in vivo с высокой эффективностью приводит к дедифференцировке взрослых гепатоцитов в клетки, несущие характеристики прогениторных клеток. Эти клетки-предшественники продемонстрировали способность к самообновлению и смогли прижиться в печени. Эти данные продемонстрировали беспрецедентный уровень фенотипической пластичности зрелых гепатоцитов[412]
Коктейль из малых молекул, Y-27632, A-83-01 и CHIR99021, может превратить зрелые гепатоциты крысы и мыши in vitro в пролиферативные бипотентные клетки — CLiPs (chemically induced liver progenitors — химически индуцированные клетки-предшественники печени). CLIPS могут дифференцироваться как в зрелые гепатоциты, так и в эпителиальные клетки жёлчных протоков, которые могут образовывать функциональные структуры протоков. При длительном культивировании CLIPS не теряют свою пролиферативную активность и способность дифференциации в клетки печени, и могут заселять хронически поражённые ткани печени[413].
Подробнее см. обзор:[414]
.
Клетки продуцирующие инсулин
Осложнения сахарного диабета, такие как сердечно-сосудистые заболевания, ретинопатия, невропатия, нефропатия и заболевания периферического кровообращения обусловлены дисрегуляцией сахара в крови из-за недостаточной продукции инсулина панкреатическими бета-клетками и при отсутствии адекватного лечения могут привести к летальному исходу. Одним из перспективных подходов к лечению диабета является Шаблон:Iw, источником которых могли бы стать плюрипотентные стволовые клетки, (в том числе ЭСК и ИПСК)[415][416]. Однако β-клетки, получаемые из плюрипотентных стволовых клеток, имеют фенотип характерный для функционально незрелых β-клеток эмбрионального типа и отличаются от взрослых β-клеток повышенным уровнем базальной секреции глюкозы и отсутствием способности реагировать на сигналы стимуляции её синтеза (что подтверждают и результаты секвенирования РНК транскриптов).[417]
Избыточная экспрессия комбинации трёх транскрипционных факторов (Шаблон:Iw, NGN3 и Шаблон:Iw) называемой PNM, способна привести к трансформации некоторых видов клеток в состояние подобное β-клеткам.[418] Оказалось, что наиболее подходящим и доступным источником для перепрограммирования в инсулин-продуцирующие клетки, является эпителий кишечника. Под действием PNM трёхмерная культура зачатков органа (так называемые органоиды) стимулирует превращение эпителиальных клеток кишечника в β-подобные клетки, которые можно использовать для трансплантации[419].
Биоинженерия клеток кровеносных сосудов
Кровеносные сосуды образуют обширные сети, которые в течение всей жизни обеспечивают клетки организма питательными веществами и кислородом. Когда кровеносные сосуды становятся старше, их структура и функции, нередко, отклоняются от нормы, способствуя тем самым многочисленным возрастным заболеваниям, таким как: инфаркт миокарда, ишемический инсульт и атеросклероз артерий, питающих сердце, мозг и нижние конечности. Поэтому, важной задачей является стимулирование роста сосудов для обеспечения циркуляции, чтобы предотвратить обострение этих заболеваний. Одним из способов стимулирования роста сосудов является имплантация индуцированных прогениторных клеток эндотелия (иПЭк).[316] Так, например, с помощью иПЭк, полученных путём частичного репрограммирования клеток эндотелия, удалось добиться увеличения коронарного кровотока и по данным эхокардиографии улучшить функционирование сердца[420]. Стволовые клетки, извлечённые из жировой ткани после липосакции можно превратить в прогениторные гладкие мышечные клетки (иПГМк), участвующие в формировании артерий и вен. Это клетки могут быть использованы для создания кровеносных сосудов, необходимых для замены неисправных артерий сердца[421]. Так, например, обнаружено, что с помощью культуры ИПСК человека в сочетании с селекцией с помощью трёх маркеров: CD34 (поверхностного гликофосфопротеина ранних эмбриональных фибробластов), NP1 (рецептора — нейрофилин1) и KDR (киназы содержащей домен рецептора), удалось получить эндотелиальные клетки, которые после трансплантации мышам образовали in vivo стабильные функциональные кровеносные сосуды, работавшие на протяжении по меньшей мере 280 дней.[422].
При лечении инфаркта миокарда важно предотвратить образование фиброзных тканей шрама и стимулировать регенерацию. Достичь этого in vivo можно применив паракринные факторы способные изменить направление дифференцировки сердечных стволовых клеток предшественников от специализации в фиброзную рубцовую ткань в сторону образования сердечно-сосудистой ткани. Например, на мышиной модели инфаркта миокарда, было показано, что однократная интрамиокардиальная инъекция мРНК фактора роста эндотелия сосудов (VEGF-A modRNA), синтетически модифицированной так чтобы предотвратить её деградацию организмом, приводит к длительному улучшению функции сердца, обусловленному перенаправлением дифференцировки эпикардиальных клеток-предшественников в сердечно-сосудистый тип клеток[423].
Мервин Иодер с соавт., описали метод для преобразования ИПСК человека в клетки, подобные эндотелиальным колониеобразующим клеткам пуповинной крови (CB-ECFCs). Полученные ими CB-ECFC-подобные клетки имели стабильный эндотелиальный фенотип, высокий пролиферативный потенциал и способность, при трансплантации мышкам, образовывать человеческие кровеносные сосуды, а также участвовать в регенерации сетчатки и конечностей мыши после ишемии. Индуцированные CB-ECFC-подобные клетки практически не образуют тератомы[424].
Прямое перепрограммирование клеток взрослого организма в прогениторные нефроны (ИПН)
Взрослые клетки проксимальных канальцев почки могут быть непосредственно перепрограммированы в прогениторные нефроны эмбриональной почки, с использованием пула из шести генов кодирующих «инструктирующие» факторы транскрипции (SIX1, SIX2, OSR1, Eyes absent homolog 1(EYA1), Homeobox A11 (HOXA11) и Snail homolog 2 (SNAI2)).[425] Возможность получения таких клеток позволит в будущем приступить к разработке методов клеточной терапии почечных заболеваний. Первые успехи на этом пути уже есть. Так, недавно было показано, что эмбриональные органоиды почки, сформированные путём самоорганизации из клеточной суспензии, после трансплантации их во взрослую почку крысы могут в ней прижиться.[426]
Биоинженерия стволовых клеток крови
Одной из самых востребованных целей регенеративной медицины является возможность получения в неограниченном количестве гемопоэтических стволовых клеток, пригодных для трансплантации, из более зрелых или дифференцированных клеток крови, для того чтобы покрыть дефицит трансплантатов костного мозга. Чтобы запустить в фибробластах процессы гемопоэза в условиях in vitro достаточно всего четырёх транскрипционных факторов: Gata2, Gfi1b, cFos, и Etv6 . Их воздействие приводит к образованию клеток подобных эндотелиальным — прогениторным клеткам с последующим возникновением из них кроветворных клеток[427]. Аналогичным образом, используя 6 транскрипционных факторов: Run1t1, Hlf, Lmo2, Prdm5, Pbx1, и Zfp37, а также ещё два фактора Mycn и Meis1 для повышения эффективности перепрограммирования, удалось получить гемопоэтические стволовые клетки из зрелых дифференцированных клеток крови[428].
Эритроциты
Переливание эритроцитов необходимо для многих пациентов с травмами или гематологическими заболеваниями. Однако, на сегодняшний день, поставка эритроцитов зависит от добровольных доноров число которых недостаточно. Кроме того, переливание крови от доноров сопряжено с определённым риском из-за возможности передачи ряда инфекций. Решить эту проблему могло бы производство необходимых количеств эритроцитов вне организма[431][432]. В принципе уже доказано, что эритроциты, полученные вне организма из мобилизованных CD34-позитивных клеток (CD это на англ. сокращённо кластер дифференцировки), способны выжить при переливании аутологичному реципиенту[433]. Эритроциты, получаемые in vitro, как правило, содержат исключительно зародышевый гемоглобин (HbF), который непригоден для нормального функционирования эритроцитов во взрослом организме.[434] Тем не менее, in vivo, после трансфузии полученных из ИПСК эритроидных прогениторных клеток содержащих ядро, наблюдалось переключение на синтез взрослой изоформы гемоглобина[435]. Однако в этом случае возникает другая проблема: несмотря на то, что эритроциты не имеют ядер, и, следовательно, не могут образовывать опухоли, их непосредственные предшественники эритроидные прогениторные клетки ядром обладают и следовательно потенциально опасны. Созревание эритробластов в функционально зрелые эритроциты требует сложного процесса реорганизации, который заканчивается удалением ядра с образованием безъядерных эритроцитов[436]. Увы, методы перепрограммирования клеток в настоящее время часто приводят к нарушению этих процессов энуклеации и поэтому использование эритроцитов или их непосредственных предшественников эритробластов для переливания ещё недостаточно защищено от возможности образования опухолей. Тем не менее Bouhassira и его коллеги обнаружили, что кратковременное воздействие цитокинов, благоприятствующих дифференцировке стволовых клеток в эритроидные, на CD34 позитивные клетки, до их размножения с последующей пролиферацией полученных предшественников, позволяет получать на порядок больший выход эритроидных клеток, чем наблюдалось ранее. И что самое главное: эти красные кровяные клетки имели те же изоформы глобина что и использованные в качестве источника CD34 позитивные клетки[437][438]. Значительно повысить выход эритроидных клеток из ИПСК или же эритроцитов из человеческих гемопоэтических стволовых клеток позволяет подавление гена SH2B3 или его инактивация генным редактированием с помощью CRISPR/Cas9[439]
Важную роль в развитии нормальных клеток крови играет сигнальный путь рецептора арил-углеводородов (AhR) (который как было установлено, содействует и образованию раковых клеток[440]). Активация AhR в человеческих гемопоэтических клетках-предшественницах (HPS) приводит к беспрецедентной пролиферации HPS, мегакариоцитов и клеток эритроидных линий.[441].
Подробный обзор методов получения эритроцитов см. в[442] [443][444][445][446]
Тромбоциты
Тромбоциты играют важную роль в предотвращении кровоизлияния у больных с тромбоцитопенией или с тромбоцитемией. Серьёзной проблемой для пациентов после повторных переливаний тромбоцитов является развитие иммунных реакций. Поэтому для клиники большое значение имеет возможность получения тромбоцитов, не содержащих HLA-антигены, вне организма и на средах, не содержащих сыворотки. Некоторых успехов в этом направлении добились Figueiredo с соавторами. Используя РНК-интерференцию для подавления синтеза β2-микроглобулина в CD34-положительных клетках, они сумели получить тромбоциты, в которых на 85 % было снижено содержание антигенов HLA[447]. Позднее удалось получить неиммуногенные по HLA класса I тромбоциты, которые кроме того не активируют NK-клетки[448]
Разработан метод получения тромбоцитов, который заключается в создании из ИПСК человека устойчивых иммортализованных линий клеток-предшественников мегакариоцитов (imMKCLs) путём доксициклин-зависимой гиперэкспрессии Bmi1 и Шаблон:Iw. Полученные imMKCLs можно размножать и культивировать в течение длительного периода (4—5 месяцев), причём даже после криоконсервации. Прекращение сверхэкспрессии c-MYC, Bmi1 и Bcl-X L (путём удаления доксициклина из среды) заставляло эти клетки производить тромбоциты CD42b+, которые по большинству параметров не отличались от тромбоцитов крови[449].
Альтернативный подход получения мегакариоцитов, с высоким выходом (3 единицы (2.4 × 1011 тромбоцитов на единицу) тромбоцитов для переливания с одного миллиона клеток ИПСК) и с чистотой более 90 %, позволяет культивирование на среде без продуктов животного происхождения (а потому с достаточно определёнными, предсказуемыми условиями, что важно для получения надёжно воспроизводимых результатов). Для перепрограммирования использовалась лентивирусная трансдукция, приводящая к одновременной экзогенной экспрессии трёх факторов транскрипции: GATA1, FLI1 и TAL1[450].
Обзор по проблемам связанным с производством тромбоцитов см.[451][452]
Иммунные клетки
Вырабатываемый иммунной системой специализированный тип белых кровяных клеток, известный как цитотоксические Т-лимфоциты (CTL), способен распознать специфические маркеры на поверхности различных инфекционных или опухолевых клеток и уничтожить эти вредоносные клетки. Поэтому иммунотерапия с использованием антиген-специфических Т-клеток в будущем может быть использована для борьбы со многими видами рака и вирусных инфекций[453]. Организм производит очень мало таких клеток и выделить их в количестве необходимом для терапии очень сложно. Потенциально эффективным подходом получения этих клеток для терапии может быть технология заключающаяся в том чтобы превратить зрелые CTL в ИПСК, которые обладают способностью к неограниченной пролиферации in vitro, размножить эти ИПСК до необходимого количества и затем провести их дифференцировку обратно в зрелые CTL[454][455][456][457]. Ещё большие возможности обещает метод, который сочетает две технологии — 1. получение ИПСК и превращение их в Т-клетки, и 2. последующую их генетическую модификацию, с помощью технологии конструирования химерных рецепторов антигенов (CAR)[458], позволяющую им распознавать раковые клетки-мишени по антигенам, в частности по CD19 — антигену, синтезируемому злокачественными В-клетками[459]. По аналогичной технологии можно было бы создать распознающие белок PBP2A Т-клетки направленные против устойчивых к антибиотикам бактерий таких как метициллин-резистентный золотистый стафилококк.
Большой клинический потенциал в качестве адъюванта для иммунотерапии рака имеют инвариантные естественные киллеры T (INKT) — клетки, которые могут служить в качестве моста между врождённой и приобретённой иммунной системами. Они повышают противоопухолевую активность организма, производя гамма-интерферон (ИФН-γ)[460]. Предложен концептуальный метод использования INKT клеток, полученных из ИПСК, для терапии рака, который состоит из четырёх ступеней: (1) выделение минимального количества INKT клеток, (2) перепрограммирования этих INKT клеток в ИПСК, (3) размножение этих ИПСК в культуре и дифференцировка их обратно в INKT клетки и (4) инъекция, полученных INKT клеток, подопытным животным для терапии рака[461].
Сконструирована клональная линия ИПСК с тремя генами отредактированными так, чтобы они экспрессировали: высокоаффинную, нерасщепляемую версию Fc-рецептора CD16a; белок интерлейкина (IL)-15 связанный с его мембранным рецептором IL-15R и при этом у них был бы подавлен нокаутом фермент CD38, который гидролизует НАД+. Природные киллеры (NK), полученные из этих сконструированных ИПСК, называемых iADAPT, активны в условиях, когда клетки обычных естественных киллеров уже не работают и поэтому могут быть использованы для эффективного лечения пациентов с запущенным раком[462].
Для терапии могут быть использованы также дендритные клетки, которые участвуют в контроле Т-клеточного ответа. После инъекции они могут выжить достаточно долго, чтобы стимулировать антиген-специфические CTL, после чего могут быть полностью устранены. Неисчерпаемым источником для терапии вакцинами могут служить антиген-представляющие дендритные клетки, полученные из человеческих ИПСК[463] или прямым перепрограммированием из фибробластов[464].
В-клетки способны к быстрой (за 2-3 дня) трансдифференцировке в макрофаги под воздействием транскрипционного фактора Шаблон:Iw[465][466]. Кроме того эффективность перепрограммирования В-клеток в ИПСК с помощью транскрипционных факторов Oct4, Sox2, Klf4 и Myc под воздействием C / EBPα возрастает 100-кратно и охватывает порядка 95 % популяции клеток.[467] С помощью C / EBPα можно преобразовать некоторые линии в-клеток лимфомы человека и лейкоза в макрофаг-подобные клетки уже не способные к дальнейшему онкогенезу.[468]
Омоложение эпителиальных клеток тимуса
Тимус является органом, размеры которого существенно сокращаются с возрастом. Это сокращение является одной из основных причин того, что иммунная система с возрастом становится менее эффективной. Одним из центральных звеньев механизма возрастной инволюции тимуса является снижение синтеза транскрипционного фактора Шаблон:Iw[469][470]. Клэр Блэкберн и её коллеги показали, что даже далеко зашедшая возрастная инволюция тимуса может быть обращена вспять путём принудительного усиления активности в эпителиальных клетках тимуса всего одного фактора транскрипции — FOXN1 с целью содействия омоложению, пролиферации и дифференцировки этих клеток в полностью функциональный эпителий[471]. Более того они показали, что принудительная экспрессия Foxn1 позволяет перепрограммировать клетки кожи — фибробласты в функциональные эпителиальные клетки тимуса. Эти FOXN1-индуцированные эпителиальные клетки тимуса (iTECs) поддерживали эффективное развитие in vitro линий клеток CD4+ и CD8+ тимуса. Но, что самое главное, после трансплантации в почку мыши, iTECs собирались и образовывали полностью организованный и функциональный тимус, который содержал все подтипы эпителиальных клеток тимуса, необходимых для поддержки дифференцировки Т-клеток, в результате чего иммунная система реципиента пополнялась новыми Т-клетками.[472] Это открытие можно считать первым примером выращивания органов из трансплантированных индуцированных стволовых клеток. В будущем этот метод может быть широко использован для повышения иммунной функции и борьбы с инфлеммеджингом у пациентов путём омоложения тимуса in situ[473].
Индуцированные стволовые/стромальные клетки мезенхимы (ИМСК)
Благодаря своим способностям вызывать иммуносупрессию и способности к дифференцировке во многие типы мезенхимальных тканей, стволовые/стромальные клетки мезенхимы (МСК) интенсивно исследуются на предмет их применения для лечения сердца, почек, нервной ткани, суставов и регенерации костей, а также терапии воспалительных заболеваний и подавления реакции отторжения при трансплантации[474]. МСК, как правило, получают путём болезненных, инвазивных процедур из взрослого костного мозга или жира, при этом выход очищенных МСК составляет всего лишь 0,001 % — 0,01 % от клеток костного мозга и 0,05 % от аспирата липосакции[475]. На практике удобнее всего получать МСК из аспирата липосакции, при этом удаляют взрослые адипоциты, которые успели потерять способность к пролиферации. Между тем взрослые адипоциты легко можно выделить и подвергнуть дедифференцировке в так называемые дедифференцированные жировые клетки (ДДЖК), которые возвращают способность к пролиферации и мультипотентность[476]. При соответствующих условиях культивирования in vitro или окружения in vivo ДДЖК могут дать начало адипогенным, остеогенным, хондрогенным или миогенным прогениторным клеткам, а также стимулировать неоваскуляризацию то есть проявляют те же свойства, что и МСК костного мозга[477][478][479][480]. У пожилых пациентов, которые больше всего нуждаются в восстановлении тканей путём аутологичной клеточной терапии, с возрастом наблюдается резкое возрастное снижение количества и качества МСК и адипоцитов[474][481][482][483][484]. Вместе с тем, известно, что ИПСК могут быть получены путём омоложения клеток даже от столетних людей[11]. Поэтому ИПСК, которые можно получить перепрограммированием клеток из тканей пациента и затем практически неограниченно размножать in vitro, может стать удобным источником омоложённых МСК.[485][486][487][488][489][490] Как показали опыты на мышах с моделью [[|en]] (Inflammatory bowel disease) таких как Болезнь Крона и Язвенный колит, молоденькие ИМСК могут быть успешно использованы для лечения даже лекарственно-рефрактерных форм подобных воспалительных заболеваний[491].
Chen с соавт. обнаружили, что воздействуя на ИПСК человека препаратом Шаблон:Iw можно достаточно быстро получить однородную культуру клеток ИМСК, которые по свойствам мало чем отличаются от молодых МСК. По мнению авторов статьи такие ИМСК не обладают способностью к образованию тератом и имеют стабильный кариотип, а поэтому могут быть использованы для терапии[492][493] В настоящее время пока мало данных об эффективности и долгосрочной безопасности полученных этим методом ИМСК in vivo. Известно только что ИМСК могут быть использованы в клинике для лечении периодонтита[494][495] и разработки методов ортопедии[496]
Мезенхимальные стволовые клетки (МСК) присутствуют во всех тканях и, как известно, прямо или косвенно способствуют регенерации тканей. Однако при использовании иМСК для трансплантационной терапии существует риск образования тератом из остаточных недифференцированных иПС-клеток. Удаление таких нежелательных иПС-клеток перед трансплантацией имеет решающее значение для реализации безопасной клеточной терапии на основе иМСК. Обнаружено что обработка культуры иМСК в течение 7 дней Бреквинаром (BRQ) мощным ингибитором дигидрооротатдегидрогеназы (ДГОДГ) избирательно удаляет недифференцированные иПС-клетки человека из иМСК, активируя остановку клеточного цикла и апоптоз, тогда как иМСК сохраняют свои свойства и потенциал дифференцировки.[497][498][499]
Важную роль в инициировании и ускорении молекулярной программы, которая приводит к дифференциации ИМСК из ИПСК выполняет белок 2MSX2 (muscle segment homeobox 2). Генетическая делеция MSX2 ухудшает дифференцировку ИМСК из ИПСК. При использовании коктейля растворимых молекул эктопическая экспрессия MSX2 способствует образованию почти однородной популяции полностью функциональных ИМСК[500].
Разработан химический метод получения ИМСК из первичных фибробластов кожи человека с использованием шести химических ингибиторов (SP600125, SB202190, Go6983, Y-27632, PD0325901 и CHIR99021) с добавлением трёх факторов роста: трансформирующего фактора роста-β (TGF-β), основного фактора роста фибробластов (bFGF) и фактора подавления лейкемии (LIF). Этот химический коктейль преобразует человеческие фибробласты в ИМСК всего за 6 дней с эффективностью порядка 30-40 процентов[501].
Культуры мезенхимальных стволовых клеток человека могут быть использованы in vitro для массового производства экзосом, которые, как выяснилось, идеально подходят в качестве средства для доставки лекарств[502][503][504][505] и для доставки в клетку-мишень факторов транскрипции или микроРНК индуцирующих перепрограммирование (дедифференцировку, дифференцировку или трансдифференцировку).[506]
Обнаружены гены позволяющие успешно идентифицировать МСК во всех исследованных тканевых источниках, в связи с чем они могут использоваться наряду с раннее выработанными критериями[507] в качестве маркеров стволовых клеток.[508] Это шесть генов: PSMB5, PSMB1, PSMD14, PSMC4, PSMA1 и PSMD8.[508] Все эти гены кодируют белки участвующие в работе комплекса протеасомы — многобелкового комплекса, разрушающего ненужные или дефектные белки при помощи протеолиза.[509]
Индуцированные хондрогенные клетки (ИХОНК)
Хрящ соединительной ткани обеспечивает движение суставов без трения. Его дегенеративное перерождение в конечном счёте, приводит к полной потере функции сустава на поздних стадиях остеоартрита. Единственным типом клеток в хряще являются хондроциты окружённые выделяемым ими внеклеточным матриксом. В настоящее время исследователи используют два способа восстановления хрящевой ткани:
- получением хондроцитов из плюрипотентных клеток (ЭСК/ИПСК)[510][511].
- получением хондроцитов прямым преобразованием фибробластов человека непосредственно в индуцированные хондрогенные клетки, минуя промежуточную стадию плюрипотентных клеток, с помощью трёх факторов репрограммирования (с-Мус, KLF4, и SOX9)[512].
Преимуществом первого метода является быстрое размножение культуры исходных клеток. Преимуществом второго — отсутствие в культуре плюрипотентных клеток, которые могли бы вызвать тератому. Клетки, полученные прямым перепрограммированием, синтезировали коллаген типа II. После имплантации в область поражения они смогли выжить и в течение не менее четырёх недель участвовали в образовании хрящевой ткани у мышей.
Источники соматических клеток
Наиболее часто для перепрограммирования используют получаемые биопсией фибробласты кожи[513][514] и клетки крови[515][516][517][518][519], однако удобнее получать соматические клетки из мочи[520][521][522][523][524]. Этот способ не требует биопсии или взятия образцов крови и поэтому безвреден для пациента. Стволовые клетки мочи имеют способность к мультипотентной дифференцировке. Они способны дифференцироваться в эндотелиальные, остеогенные, хондрогенные, адипогенные, скелетные миогенные и нейрогенные линии и вместе с тем не образуют тератомы.[525][526]. Поэтому их эпигенетическая память хорошо подходит для перепрограммирования в ИПСК. Вместе с тем, клеток в моче мало, эффективность их превращения в стволовые клетки низка, тогда как риск бактериального заражения выше, по сравнению с другими источниками клеток[527].
Ещё одним перспективным источником клеток для перепрограммирования являются мезенхимальные стволовые клетки, полученные из фолликулов человеческого волоса.[528] и кератиноциты[529]
Происхождение соматических клеток используемых для перепрограммирования может оказывать влияние на эффективность перепрограммирования[530][531], функциональные свойства получаемых индуцированных стволовых клеток[532] и способность к образованию опухолей[533].
ИПСК сохраняют эпигенетическую память о тканях из которых они произошли, и это влияет на их способность к направленной дифференцировке[456][532][534][535][536][537][538][539] Остаточная эпигенетическая память не обязательно проявляется на стадии плюрипотентности — ИПСК, полученные из разных тканей имеют надлежащую морфологию, в них активны гены характерные для плюрипотентности, и они способны дифференцироваться в ткани трёх эмбриональных слоёв как in vitro, так и in vivo[540]. Однако, эта эпигенетическая память может проявиться позже, во время повторной дифференцировки в специфические типы клеток, которая требует активации локусов, сохранивших элементы остаточной эпигенетической памяти.[456][532][534][535][536][537]
Культуральная среда для плюрипотентных стволовых клеток свободная от питающих клеток и сыворотки
Для выращивания плюрипотентных стволовых клеток человека обычно используются так называемые питающие клетки (feeder cells) и сыворотка из эмбрионов быка (FBS). И то и другое является продуктами животного происхождения и может изменять свойства от партии к партии, что затрудняет стандартизацию условий. Кроме того выращивание стволовых клеток на клетках другого человека или животных создаёт риск загрязнения патогенными микроорганизмами, которые могут стать источником болезни для пациента после клеточной терапии.[541]. Поэтому компоненты животного происхождения требуют дорогостоящего контроля на качество, и их свободу от патогенов, Шаблон:Iw и антигенов[542]. Для замены питающих клеток используются различные подложки, такие как: Matrigel, CELLstart, рекомбинантные белки и синтетические полимеры такие как Synthemax (см. обзор к статье[543] [544][545].
Известно, что важную роль в адгезии клеток друг к другу и к внеклеточному матриксу играет тримерный белок ламинин. Было найдено что ламинин-511, названный так за то, что он содержит α5 , β1 и γ1 цепи[546], если его нанести на дно чашки Петри способен поддерживать стабильную культуру ЭСК или ИПСК[547]. На основе этого открытия была разработана стандартная методика для длительного культивирования ЭСК и ИПСК человека в чашках покрытых rLN511E8 — рекомбинантным фрагментом ламинина −511 и с безсывороточной средой StemFit™[543]. Аналогичная методика но с использованием ламинина-521 и E-кадгерина позволила клонировать in vitro эмбриональные стволовые клетки без необходимости использовать ингибиторы Шаблон:Нп2[548]. Интересно было бы применить её и для ИПСК.
В стадии разработки находится также очень дешёвая подложка из углеродных нанотрубок. Она позволит выращивать и проводить дифференцировку стволовых клеток в промышленных масштабах. По заверениям авторов изобретения, изменяя условия изготовления этой подложки, можно так изменить её свойства, что она будет влиять на способность выращиваемых клеток к адгезии, на их пролиферацию и морфологию образуемых клеточных колоний.[549]
Для Шаблон:Iw широко используют гидрогели, такие как, например, гидрогель для получения кардиомиоцитов в одну стадию[550]
Разработана среда-коктейль CEPT, состоящая из четырёх малых молекул: chroman 1 (ингибитор ROCK)[551], emricasan (ингибитор каспазы)[552], транс-ISRIB.[553] и полиаминов таких как спермин, которая, улучшает жизнеспособность плюрипотентных стволовых клеток человека, защищает клетки во время культивирования и криоконсервации, а также способствует дифференцировке in vitro и образованию органоидов[554]
Способы доставки репрограммирующих факторов в ядро
Способы доставки можно подразделить на вирусные и невирусные, а также на те, что связаны с интеграцией векторов несущих репрограммирующие факторы в геном и действующие без интеграции[555][556].
(Значками отмечены свойства соответствующего вектора: (+)- Геномная интеграция происходит; (±)- интеграция происходит, но очень редко; (-)- вектор не интегрируется; (тр)- после интеграции векторная конструкция должна быть удалена транспозазой.)
Доставка вирусами
Чаще всего для доставки используются вирусные векторные системы. Вирусы используют свой врождённый механизм заражения клетки, что позволяет использовать их для доставки и внедрения кассеты генов необходимых для экспрессии репрограммирующих факторов В качестве вирусов для доставки генов обычно используют:
- Ретровирусы(+). Они в качестве генома содержат одноцепочечную молекулу РНК. С помощью обратной транскрипции на РНК вируса синтезируется линейная двухцепочечная ДНК которая затем интегрируется в двухцепочечную ДНК генома клетки-хозяина. Описан метод эффективного перепрограммирования клеток человека в ИПСК с помощью одного вектора содержащего четыре ТФ, в сочетании с коктейлем, содержащим три небольшие молекулы[557]. Приведены прописи аналогичных методов[558].
- Лентивирусы(+). Они являются подклассом ретровирусов. В отличие от ретровирусных векторов, лентивирусные векторы могут заражать не только делящиеся клетки, но и находящиеся в покое терминально дифференцированные клетки[559][560][561]. Удаляемая полицистронная кассета STEMCCA представляющая собой вырезаемый Шаблон:Iw перепрограммирующий лентивирусный вектор позволяет осуществлять свободное от трансгенов перепрограммирование взрослых фибробластов кожи человека в ИПСК[562].
- Вирус Сендай (-) — вирус из семейства Paramyxoviridae, содержащий одноцепочечную РНК[563][564]. Вирус Сендай считается безопасным, потому что его генетический материал не включается в ДНК клетки, и от него достаточно легко избавиться инкубацией культуры клеток при повышенной температуре. Вирус от тепла погибает, тогда как трансформируемым клеткам такая обработка не вредит[565]. Для получения ИПСК этим методом можно воспользоваться готовыми наборами[566]. В отличие от ретровирусных и эписомных векторов, при перепрограммировании с использованием вируса Сендай пока не наблюдалось дефектных клонов, не способных к дифференцировке[567]. Описание метода см[568].
- Венесуэльский вирус лошадиного энцефалита (VEE) (-) у которого структурные белки удалены, но все ещё присутствуют неструктурные белки,[3] позволяет с помощью самореплицирующегося полицистронного репликона РНК внести в клетку однократной трансфекцией четыре перепрограммирующих фактора (OCT4, KLF4, SOX2 и либо c-MYC либо GLIS1) .
- Не интегрирующиеся аденовирусы (±)[569]. По мнению некоторых авторов, векторную кассету, после того как перепрограммирование достигнуто, можно удалить с помощью трансфекции мРНК Cre рекомбиназы[570], что якобы позволяет сочетать высокую эффективность вирусной доставки с достоинствами перепрограммированных клеток, свободных от остатков трансгенов, которые могут вызывать злокачественную трансформацию.
Доставка c помощью аденоассоциированного вирусного вектора в экзосоме
Аденоассоциированный вирусный вектор (AAV) может быть связан с экзосомами (exo-AAV), если вектор выделяют из культуральной среды клеток-продуцентов. Такой вектор более устойчив к нейтрализующим антителам по сравнению со стандартным AAV. Он более эффективен для трансфекции in vivo[571][572]
Невирусная доставка векторов
По сравнению с вирусными векторами, не-вирусные векторы являются потенциально менее иммуногенными и их сравнительно легче использовать в условиях клиники.
Невирусным подходом является прямая доставка в клетку синтетической мРНК(-) кодирующей четыре канонических фактора Яманаки: KLF4, c-MYC, OCT4, и SOX2. Метод позволяет достичь высокой эффективности перепрограммирования, но технически сложен и сильно зависит от качества реактивов[573]. Недавно он был модифицирован,[574] что позволило сократить продолжительность процесса и число необходимых реагентов. Ещё более экономным в отношении стоимости перепрограммирования является метод получения ИПСК и последующей их дифференцировки с помощью микрожидкостного устройства в объёмах не превышающих микролитра и эффективностью в 50 раз большей чем при традиционном перепрограммировании путём доставки синтетических мРНК, кодирующих факторы транскрипции[575][576].
Для перепрограммирования in vivo очевидно подойдёт доставка мРНК с помощью олиго (карбонат-b-α-амино эфиров) под общим названием CARTs (charge-altering releasable transporters), катионов, которые образуя комплекс с мРНК, защищают её и доставив в клетку высвобождают[577]
Перепрограммирование мышечных клеток головастиков Xenopus в недифференцированные клетки может быть достигнуто In vivo с помощью ДНК(±) мыши кодирующей Oct4, Sox2, и Klf4 в условиях способствующих регенерации.[578]
Привлекательным методом невирусной доставки генов, который позволяет эффективно встраивать желаемую ДНК в геном различных клеток является использование транспозонов — сложных структур содержащих дискретные куски ДНК, обладающие способностью изменять своё местоположение в геноме посредством механизма транспозиции (инсерции), вынуждающего его включиться или наоборот покинуть определённый участок генома. Транспозон состоит из инсерционных сегментов ДНК, которые могут перемещаться как единое целое, захватывая лежащие между ними гены. Описано несколько транспозонных систем пригодных для транспортировки генов в клетки млекопитающих. Это «Спящая красавица» — Sleeping Beauty (SB), SB100X, и Tol2 и PiggyBac (PB). Разработаны эффективные методики получения ИПСК мыши и человека введением в соматические клетки векторов на основе PiggyBac (тр)[579][580] В том числе с кассетой из ДНК кодирующей 6 факторов (Oct4, c-Myc, Klf4, Sox2 плюс Rarg (retinoic acid receptor gamma — RAR-γ) и Lrh-1 (liver receptor homologue 1 известный также как Nr5a2).[10], что позволило сократить продолжительность перепрограммирования до 4-12 дней и поднять его эффективность до уровня сопоставимого с методами переноса ядер и слияния клеток.
Векторные системы на основе эписомных плазмид(±). Перепрограммирование основанное на использовании эписомных плазмид считается наиболее эффективным и безопасным так как не требует интеграции трансгенов в геном[111][581][582]. Однако первоначально эффективность перепрограммирования этим методом была крайне низка (менее 0,0002 %.) . Значительно увеличить эффективность индукции ИПСК позволило использование комбинации плазмид, кодирующих OCT3/4, SOX2, KLF4, L-MYC, LIN28 и малой интерферирующей РНК для ингибирования гена TP53, кодирующего белок p53 (супрессор опухолей, ингибирующий перепрограммирование) в сочетании с Эпштейн-Барр ядерным антигеном 1 (EBNA1), который является белком вируса Эпштейна-Барр (ВЭБ), необходимым для амплификации эписомных векторов[516] Разработаны полицистронные свободные от вирусов плазмиды (±), содержащие последовательности самовыщепляющегося 2A пептида (пептида, который взаимодействуя с рибосомой инициирует отделение от растущего полипротеина, вызвав «пропуск» последней пептидной связи на С-конце 2А[583][584]) и постоянно активный промотор вируса энцефаломиокардита (CMV).[585]
Рекомбинантные белки (-) представляют собой проникающие в ядро белки, полученные путём рекомбинации (в данном случае, присоединения последовательности, кодирующей поли-аргининовый домен трансдукции[586][587], к генам четырёх перепрограммирующих факторов: Oct4, Sox2, Klf4 и C-Myc, на участке соответствующем их С-концевой последовательности, и, кроме того, постоянно активного промотора вируса энцефаломиокардита) с последующим синтезом этих белков в тельцах включения бактерии E.coli[12]. Выделенные из E. coli и очищенные рекомбинантные белки используются для репрограммирования без интеграции. Эффективность репрограммирования с помощью рекомбинантных белков ничтожно мала, но может быть существенно увеличена при воспалении вызываемом поли I:C (синтетическим аналогом двухцепочечной РНК)[13].
Химически индуцированные плюрипотентные клетки (ХИПСК)
Используя для перепрограммирования исключительно малые молекулы, китайские учёные Дэн Хонгкуй с коллегами показали, что для перепрограммирования клеток достаточно эндогенных «мастер генов». Они индуцировали плюрипотентное состояние у взрослых клеток мыши, используя семь низкомолекулярных соединений[4][588]. Эффективность метода оказалась достаточно высокой: она была в состоянии преобразовать 0,2 % взрослых клеток ткани в ИПСК, что сопоставимо с результатами получаемыми при использовании экзогенных «мастер генов» доставляемых вирусными векторами. Авторы отмечают, что полученные от мышей CiPSCs были на «100 % жизнеспособными и здоровы на протяжении, по меньшей мере, 6 месяцев наблюдения». В число этих семи низкомолекулярных соединений входили:
- вальпроевая кислота — жирная кислота с разветвлённой цепью — ингибитор гистондеацетилазы[589], повышает эффективность перепрограммирования соматических мышиных эмбриональных фибробластов (примерно в 100 раз), способствуя активации генов плюрипотентности и репрессии генов линейной дифференцировки[202][590].
- ингибитор GSK3 — гликоген синтез киназы 3 (CHIR) (подробнее см.[591][592]). Ингибирование GSK3 имитирует активацию сигнального пути Wnt в результате чего β-катенин избежав деградации входит в ядро, где активирует синтез ферментативной субъединицы теломеразы (TERT)[593];
- ингибитор трансформирующего ростового фактора бета (E-616452). Низкомолекулярный ингибитор TGF-[бета] сигнализации в ходе перепрограммирования заменяет Sox2 активируя Nanog[594][595];
- ингибитор моноаминоксидазы антидепрессант транилципромин одновременно является ещё и ингибитором деметилазы которая избирательно удаляет метильные группы с лизина в положении Лиз4 или Лиз9 гистона H3. Действуя на хроматин транилципромин вызывает глобальное увеличение H3K4 метилирования[596] и как следствие этого дерепрессию генов[597][598] . Ингибиторы деметилаз обладают ещё и способностью подавлять избыточную пролиферацию клеток и таким образом подавлять развитие раковых опухолей[599]
- Форсколин (forskolin) — препарат, активирующий аденилатциклазу — фермент, катализирующий превращение АТФ в цАМФ;
- ингибитор гидролазы S-аденозилгомоцистеина (под названием 3-деазанепланоцин (DZNep)), вещество вызывающее разрушение поликомб репрессорного комплекса PRC2 и ингибирующее метилирование гистонов[600].
- PD-0325901 — высокоизбирательный и сильнодействующий синтетический ингибитор митоген-активируемой протеинкиназы MEK[601][602], избирательно фосфорилирующей серин / треонин и остатки тирозина в активационной петле её субстратов. PD-0325901 проходит испытания в качестве противоопухолевого препарата.
Методы и составы «коктейлей» из малых молекул для химического воздействия на мышечную ткань с целью активации процессов образования функциональных сердечных, скелетных и гладкомышечных клеток и регенерации повреждённых тканей in situ можно найти в обзоре Джанга и Виллиамса.[291] С механизмами действия малых молекул при перепрограммировании можно ознакомиться в обзорах[603][604].
Прямое перепрограммирование фибробластов через универсальный XEN этап
В 2015-м году система химического перепрограммирования была усовершенствована — разбита на три этапа с использованием разных «коктейлей» на разных этапах. Были найдены новые малые молекулы. Это позволило поднять выход перепрограммированных клеток почти в 1000 раз[605]. Выяснилось, что поскольку начальный этап химического перепрограммирования переводит клетки фибробластов в стабильное XEN (extra-embryonic endoderm)-подобное состояние одинаковое для прямого перепрограммирование фибробластов в различные клетки, эти XEN-подобные клетки (которые можно размножать) могут служить универсальной платформой для создания различных желаемых типов клеток[606].
Обнаружено что основным барьером для химического перепрограммирования является путь JNK, ингибирование которого необходимо для подавления провоспалительных путей мешающих индукции клеточной пластичности и программы, подобной регенерации конечностей аксолотля[607]. Не случайно поэтому эволюционно консервативный сигнальный путь N-концевой киназы c-Jun (JNK) является важным генетическим детерминантом контроля долголетия[608]
Краситель для выявления плюрипотентных клеток человека
Для безопасной терапии индуцированными стволовыми клетками необходимы несложные методы обнаружения и разрушения недифференцированных стволовых клеток. С этой целью широко используются антитела SSEA-4 и SSEA-5, а также антитела на антигены: антитело TRA-1-60[609] на трансмембранный гликопротеин подокаликсин (podocalyxin), Oct3/Oct4 и Nanog. Эти вещества как и большинство белков стоят недёшево и быстро портятся. Гораздо более стабильным и дешёвым реагентом способным отличить плюрипотентные стволовые клетки от дифференцированных клеток оказался флуоресцентный краситель KP-1 (Kyoto probe 1), который избирательно красит в митохондриях альдегиддегидрогеназу 2 (ALDH2). Эта селективность KP-1 зависит от способности митохондрии удалить его с помощью транспортных белков множественной лекарственной устойчивости ABCB1 и ABCG2, экспрессия которых подавляется в плюрипотентных клетках человека и индуцируется после дифференцировки[610].
Фотодинамическая технология удаления ИПСК
Способность плюрипотентных клеток, и в частности ИПСК, избирательно окрашиваться красным красителем CD1 может быть использована для их селективного удаления из инкубационной среды, с помощью фотодинамической обработки светом, оставшихся недифференцированными ИПСК после проведения их дифференцировки в соматические клетки. Эта простая технология предварительной очистки позволяет резко снизить риск образования опухолей типа тератомы при трансплантации клеток полученных из ИПСК[611]. Разработана также разновидность этой технологии. Для этого флуоресцентную пробу KP-1 (Kyoto probe 1) (которая обычными клетками выводится наружу белками ABCB1 и ABCG2, синтез которых в ИПСК подавлен) соединили с анти раковым препаратом SN38. Полученный препарат, названный «конъюгат 17» за 72 часа полностью удаляет оставшиеся недифференцированными ИПСК[612][613]
Химическая технология удаления ИПСК in vitro
Чтобы избавиться от плюрипотентных клеток, которые могут вызвать образование терратомы, можно использовать синтетические фосфо-D-пептиды, поскольку известно что на поверхности ИПСК сверхэкспрессируются щелочные фосфатазы, которые вызывают дефосфорилирование фосфо-D-пептидов в гидрофобные пептиды, которые агрегируя вызывают гибель клеток[614].
Можно также удалить плюрипотентные клетки с помощью препарата Брекинар (Brequinar, DuP-785), который действует как мощный и селективный ингибитор фермента дигидрооротатдегидрогеназы. Он блокирует синтез нуклеотидов на основе пиримидина в организме и таким образом подавляет рост клеток. В опытах с плюрипотентными стволовыми клетками мыши выяснилось что брекинар вызывает остановку клеточного цикла, гибель именно стволовых клеток, тогда как в отношении нормальных тканеспецифичных стволовых клеток и дифференцирующихся клеток он менее токсичен.[497][498][499]
Описаны также способы устранения ИПСК, смешанных с кардиомиоцитами, нейронами и гепатоцитами, с использованием препарата от ожирения, называемого орлистат[615] или аторвастатина[616].
Ещё один способ удаления ИПСК основан на использовании диаминов салициловой кислоты.[617]
Перспективы изучения индуцированных стволовых клеток для медицины
Ярким свидетельством значения индуцированных стволовых клеток для медицины будущего и всего человечества, стало присуждение Джону Гордону и Синъе Яманаке Нобелевской премии 2012 года по медицине[618][619]. Бо́льшую часть от Нобелевской премии, а также от полученной им в 2013 году Премии за прорыв в области медицины в 3 млн долларов Синъя Яманака решил потратить на развитие своих исследований. В настоящее время индуцированные стволовые клетки используются главным образом для моделирования болезней, скрининга (селективного отбора) лекарств, проверки токсичности различных препаратов. Однако в ближайшие годы начнётся их широкомасштабное использование для клеточной терапии и выращивания органов и их «запчастей» для трансплантации[157][620][621][622].
См. также
- Регенеративная медицина
- Клеточная трансплантология
- Выращивание органов
- Репрограммирование клеток
- Examples of in vitro transdifferentiation by lineage-instructive approachШаблон:Ref-en
- Examples of in vitro transdifferentiation by initial epigenetic activation phase approachШаблон:Ref-en
- Examples of in vivo transdifferentiation by lineage-instructive approachШаблон:Ref-en
- Induced stem cells
Примечания
Литература
- Шаблон:Книга
- Knyazer, A., Bunu, G., Toren, D., Mracica, T. B., Segev, Y., Wolfson, M., … & Fraifeld, V. E. (2021). Small molecules for cell reprogramming: a systems biology analysis. Aging (Albany NY), 13(24), 25739. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- Morris S. A. (2019), Cell identity reprogrammed. Nature. 574(7778). News & Views Шаблон:Doi История репрограммирования клеток
- Cai, Y., Belmonte, J. C. I., Qu, J., Liu, G. H., & Zhang, W. (2022). Opening up the black box of human cell plasticity. The Innovation, 3(5), 100276. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- Qin, H., Zhao, A. & Fu, X. (2017). Small molecules for reprogramming and transdifferentiation Cell. Mol. Life Sci. 1-23. Шаблон:DOI
- Подробные протоколы методов перепрограммирования и анализа полученных ИПСК
- Luni, C., Gagliano, O., & Elvassore, N. (2022). Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annual Review of Biomedical Engineering, 24, 231—248. Шаблон:PMID Шаблон:DOI.
- Testa, G., Di Benedetto, G., & Passaro, F. (2021). Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration. International Journal of Molecular Sciences, 22(17), 9517. Шаблон:Doi
Ссылки
- ESC & iPSC News
- Efficient cell specific differentiation systems for iPSC. Ask the Expert discussion.
- Zakian Lab iPSC collection
- Zakian Lab Publications
- ↑ 1,0 1,1 1,2 1,3 Шаблон:Cite pmid
- ↑ 2,0 2,1 Ошибка цитирования Неверный тег
<ref>
; для сносокdefined factors
не указан текст - ↑ 3,0 3,1 3,2 Шаблон:Cite pmid
- ↑ 4,0 4,1 4,2 Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ 10,0 10,1 Шаблон:Cite pmid
- ↑ 11,0 11,1 11,2 Шаблон:Cite pmid
- ↑ 12,0 12,1 Шаблон:Cite pmid
- ↑ 13,0 13,1 Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ 17,0 17,1 Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Box 3 Шаблон:Wayback FROM THE ARTICLE: Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Yan K. S. et al.,& Kuo C. J. (2017). Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell, 21(1), 78-90.e6 DOI: https://dx.doi.org/10.1016/j.stem.2017.06.014
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Публикация
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Roh, et al. (Feb., 2014). Human embryonic stem cell line prepared by nuclear transfer of a human somatic cell into an enucleated human oocyte. United States Patent № 8,647,872
- ↑ Шаблон:Cite pmid
- ↑ 54,0 54,1 Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ 56,0 56,1 Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Eva Hörmanseder, Angela Simeone, George E. Allen, Charles R. Bradshaw, Magdalena Figlmüller, John Gurdon, Jerome Jullien (2017). H3K4 Methylation-Dependent Memory of Somatic Cell Identity Inhibits Reprogramming and Development of Nuclear Transfer Embryos. Cell Stem Cell, Шаблон:DOI
- ↑ Qu P, Qing S, Liu R, Qin H, Wang W, Qiao F, et al. (2017) Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS ONE12(3): e0174535. https://doi.org/10.1371/journal.pone.0174535
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Monya Baker (April 2014)Stem cells made by cloning adult humans Шаблон:Wayback. Nature
- ↑ «Генетически модифицированные» дети: правда из первых рук Шаблон:Wayback. Фонд «Вечная молодость»
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ David Shukman (2014) China cloning on an 'industrial scale' Шаблон:Wayback BBC News
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Gouveia, C.; Huyser, C.; Egli, D.; Pepper, M.S. (2020). Lessons Learned from Somatic Cell Nuclear Transfer Шаблон:Wayback. 21(7), 2314 Шаблон:Doi Шаблон:PMC Шаблон:PMID
- ↑ Wang, X., Qu, J., Li, J., He, H., Liu, Z., & Huan, Y. (2020). Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Frontiers in Genetics, 11, 205. Шаблон:Doi Шаблон:PMC
- ↑ 74,0 74,1 Шаблон:Cite pmid
- ↑ Перепрограммирование клеток в ИПСК in vivo Шаблон:Wayback. Рисунок
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Yong Jin Choi, Chao-Po Lin, Davide Risso, et al., & Lin He (2017). Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells Шаблон:Wayback. Science : Шаблон:DOI
- ↑ Vanderburg B.B. (2017). miR-34a MicroRNA Deficiency Induces Totipotent Stem Cells Шаблон:Wayback. ReliaWire
- ↑ Hao, C., Chu, S., Quan, X., Zhou, T., Shi, J., Huang, X., ... & Pei, D. (2023). Establishing extended pluripotent stem cells from human urine cells. Cell & Bioscience, 13(1), 1-11. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Yang, Y., Liu, B., Xu, J., Wang, J., Wu, J., Shi, C., … & Zhu, J. (2017). Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell, 169(2), 243—257. Шаблон:Doi
- ↑ Видео с пояснениями Pluripotency Expanded. Cell, 2017 169(2) Шаблон:Wayback
- ↑ Hu, Y., Yang, Y., Tan, P. et al. (2022). Induction of mouse totipotent stem cells by a defined chemical cocktail. Nature Шаблон:Doi
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Zhou, Q., Wang, M., Yuan, Y., Wang, X., Fu, R., Wan, H., … & Feng, G. (2016). Complete meiosis from embryonic stem cell-derived germ cells in vitro Шаблон:Wayback. Cell stem cell, 18(3), 330—340. DOI: https://dx.doi.org/10.1016/j.stem.2016.01.017
- ↑ Zhang, Y., & Liu, Y. (2016). Functional spermatid-like cells derived from the ground-state embryonic stem cells in vitro Шаблон:Wayback. Science China Life Sciences, 59(4), 436—437. Шаблон:DOI Шаблон:PMID
- ↑ Hou, J., Yang, S., Yang, H., Liu, Y., Liu, Y., Hai, Y., … & Li, Z. (2014). Generation of male differentiated germ cells from various types of stem cells Шаблон:Wayback. Reproduction, 147(6), R179-R188. Шаблон:DOI
- ↑ Naoko Irie, Shinseog Kim, and M. Azim Surani (2016). Human Germline Development from Pluripotent Stem Cells in vitro. Journal of Mammalian Ova Research, 33(2), 79-87 Шаблон:Doi
- ↑ Xu, H., Yang, M., Tian, R. et al. (2020). Derivation and propagation of spermatogonial stem cells from human pluripotent cells. Stem Cell Res Ther 11, 408 https://doi.org/10.1186/s13287-020-01896-0
- ↑ Orie Hikabe, Nobuhiko Hamazaki, Go Nagamatsu, Yayoi Obata, Yuji Hirao, Norio Hamada, So Shimamoto, Takuya Imamura, Kinichi Nakashima, Mitinori Saitou & Katsuhiko Hayashi (2016). Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, Шаблон:Doi
- ↑ Gretchen Vogel (2016). Mouse egg cells made entirely in the lab give rise to healthy offspring Шаблон:Wayback. Science, Шаблон:DOI
- ↑ Yamashiro, C., Sasaki, K., Yokobayashi, S. et al. (2020). Generation of human oogonia from induced pluripotent stem cells in culture. Nat Protoc 15, 1560—1583 https://doi.org/10.1038/s41596-020-0297-5
- ↑ Hamazaki, N., Kyogoku, H., Araki, H. et al. (2020). Reconstitution of the oocyte transcriptional network with transcription factors. Nature 589(7841):264-269 Шаблон:PMID Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Альбертс Б. с соавтором И Дж. Уотсон (1987) Молекулярная биодогия клетки т.4 стр 72
- ↑ 104,0 104,1 GRAHAM, C. F. (1977). Teratocarcinoma cells and normal mouse embryogenesis. In Concepts in Mammalian Embryogenesis (ed. M. I. Sherman), pp. 315—394. Cambridge: M.I.T. Press
- ↑ 105,0 105,1 ILLMENSEE, K. (1978). Reversion of malignancy and normalized differentiation of teratocarcinoma cells in chimeric mice. In Genetic Mosaics and Chimeras in Mammals (ed. L. Russell), pp. 3-24. New York: Plenum
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Jiho Choi, Soohyun Lee, William Mallard et al.,(2015). A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nature Biotechnology, Шаблон:Doi
- ↑ Phanstiel DH, Brumbaugh J, Wenger CD et al. & Coon JJ. (2011) Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods.; 8(10): 821—827. Шаблон:Doi
- ↑ 111,0 111,1 Linzhao Cheng, Nancy F. Hansen, Ling Zhao, et al & P. Paul Liu (2012) Low Incidence of DNA Sequence Variation in Human Induced Pluripotent Stem Cells Generated by Nonintegrating Plasmid Expression Cell Stem Cell, 2012; 10 (3), 337—344 Шаблон:Doi
- ↑ Zhao XY, Li W, Lv Z et al. (2009) iPS cells produce viable mice through tetraploid complementation. Nature ; 461: 86-90 doi:10.1038/nature08267
- ↑ Boland MJ, Hazen JL, Nazor KL et al. (2009) Adult mice generated from induced pluripotent stem cells. Nature 461, 91-94. doi:10.1038/nature08310
- ↑ Choi, Jiho; Lee, Soohyun; Mallard, William; et al. (2015). A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nature Biotechnology 33: 1173—1181. Шаблон:Doi
- ↑ Shutova, M. V., Surdina, A. V., Ischenko, D. S., Naumov, V. A., Bogomazova, A. N., Vassina, E. M., … & Kiselev, S. L. (2016). An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion. Cell Cycle, 15(7), 986—997. Шаблон:DOI
- ↑ 116,0 116,1 116,2 Kunitomi, A., Yuasa, S., Sugiyama, F., Saito, Y., Seki, T., Kusumoto, D., … & Egashira, T. (2016). H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells. Stem cell reports. 6(6), 825—833 Шаблон:Doi
- ↑ Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., … & Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379—391.
- ↑ Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., … & Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. cell, 122(6), 947—956. Шаблон:PMID Шаблон:PMC {{DOI: 10.1016/j.cell.2005.08.020}}
- ↑ 119,0 119,1 Velychko, S., Adachi, K., Kim, K. P., Hou, Y., MacCarthy, C. M., Wu, G., & Schöler, H. R. (2019). Excluding Oct4 from Yamanaka Cocktail Unleashes the Developmental Potential of iPSCs. Cell stem cell, 25(6), 737—753. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Quality of induced pluripotent stem cells is dramatically enhanced by omitting what was thought to be the most crucial reprogramming factor Шаблон:Wayback Oct4 is not only unnecessary but damaging during generation of mouse induced pluripotent stem cells (iPSCs)
- ↑ An, Z., Liu, P., Zheng, J., Si, C., Li, T., Chen, Y., … & Ding, S. (2019). Sox2 and Klf4 as the Functional Core in Pluripotency Induction without Exogenous Oct4. Cell reports, 29(7), 1986—2000. Шаблон:PMID Шаблон:DOI
- ↑ Yagi T, Kosakai A, Ito D, Okada Y, Akamatsu W, et al. (2012) Establishment of Induced Pluripotent Stem Cells from Centenarians for Neurodegenerative Disease Research. PLoS ONE 7(7): e41572 Шаблон:Doi
- ↑ Milhavet, O., & Lemaitre, J. M. (2014). Senescent-Derived Pluripotent Stem Cells Are Able to Redifferentiate into Fully Rejuvenated Cells. In Tumor Dormancy, Quiescence, and Senescence, Volume 2 (pp. 265—276). Springer Netherlands. Шаблон:Doi
- ↑ Lee et al. (2020) Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells. Biochemical and Biophysical Research Communications. DOI: https://doi.org/10.1016/j.bbrc.2020.02.092
- ↑ Yehezkel S, Rebibo-Sabbah A, Segev Y, Tzukerman M, Shaked R, Huber I, Gepstein L, Skorecki K, Selig S (2011) Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives. Epigenetics. 2011 Jan 1;6(1):63-75
- ↑ West MD, Vaziri H. (2010) Back to immortality: the restoration of embryonic telomere length during induced pluripotency. Regen Med.;5(4):485-488
- ↑ Marión RM, Blasco MA. (2010) Telomere rejuvenation during nuclear reprogramming. Curr Opin Genet Dev. 2010 Apr;20(2):190-196
- ↑ Gourronc FA, Klingelhutz AJ. (2011) Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells. Mutat Res. 2011 May 13
- ↑ Osamu Hashizume, Sakiko Ohnishi, Takayuki Mito, et al. & Jun-Ichi Hayashi (2015). Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Scientific Reports, 5, Article number: 10434 Шаблон:Doi
- ↑ Rohani, L., Johnson, A. A., Arnold, A. and Stolzing, A. (2014), The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell, 13(1): 2-7. Шаблон:Doi
- ↑ Предохранитель ИПСК. БМ.
- ↑ Shigeki Yagyu, Valentina Hoyos, Francesca Del Bufalo, Malcolm K Brenner. (2015). An Inducible Caspase-9 Suicide Gene to Improve the Safety of Therapy Using Human Induced Pluripotent Stem Cells. Molecular Therapy. 23, 1475-1485
- ↑ Tongbiao Zhao,Zhen-Ning Zhang, Zhili Rong & Yang Xu (2011) Immunogenicity of induced pluripotent stem cells Nature 474, 212—215 doi:10.1038/nature10135
- ↑ Dhodapkar MV, Dhodapkar KM.(2011) Spontaneous and therapy-induced immunity to pluripotency genes in humans: clinical implications, opportunities and challenges. Cancer Immunol Immunother.; 60(3):413-418
- ↑ Ivan Gutierrez-Aranda, (2010) Human Induced Pluripotent Stem Cells Develop Teratoma More Efficiently and Faster than Human Embryonic Stem Cells Regardless of the Site of Injection. Stem Cells. 2010;28:1568-1570
- ↑ Zhao T, Zhang ZN, Rong Z, Xu Y.(2011) Immunogenicity of induced pluripotent stem cells. Nature.;474:212-215
- ↑ Paul J. Fairchild, Naoki Ichiryu (2013) Mitigating the Risk of Immunogenicity in the Pursuit of Induced Pluripotency. In «The Immunological Barriers to Regenerative Medicine» pp 77-94 Online ISBN 978-1-4614-5480-9 Springer New York, DOI 10.1007/978-1-4614-5480-9_5
- ↑ Jeremy I. Pearl, Joseph C. Wu (2013) The Immunogenicity of Embryonic Stem Cells and Their Differentiated Progeny. The Immunological Barriers to Regenerative Medicine Stem Cell Biology and Regenerative Medicine 2013, pp 37-48 Online ISBN 978-1-4614-5480-9 Springer New York
- ↑ Chan-Jung Chang, Koyel Mitra, Mariko Koya et al. & Eric E. Bouhassira (2011) Production of Embryonic and Fetal-Like Red Blood Cells from Human Induced Pluripotent Stem Cells. PLoS One.; 6(10): e25761. doi: 10.1371/journal.pone.0025761.
- ↑ Lindgren AG, Natsuhara K, Tian E, Vincent JJ, Li X, et al. (2011) Loss of Pten Causes Tumor Initiation Following Differentiation of Murine Pluripotent Stem Cells Due to Failed Repression of Nanog. PLoS ONE 6(1): e16478. doi:10.1371/journal.pone.0016478
- ↑ Grad, I., Hibaoui, Y., Jaconi,. et al. & Feki, A. (2011) NANOG priming before full reprogramming may generate germ cell tumours Шаблон:Wayback. Eur. Cell Mater, 22, 258—274
- ↑ Uri Ben-David, Qing-Fen Gan, Tamar Golan-Lev, et al & Nissim Benvenisty (2013) Selective Elimination of Human Pluripotent Stem Cells by an Oleate Synthesis Inhibitor Discovered in a High-Throughput Screen Шаблон:Wayback Cell Stem Cell, 12(2), 167—179 Шаблон:Doi
- ↑ Lou, K. J. (2013). Small molecules vs. teratomas. SciBX: Science-Business eXchange, 6(7). doi:10.1038/scibx.2013.158
- ↑ Boheler, K. R., Bhattacharya, S., Kropp, E. M., Chuppa, S., Riordon, D. R., Bausch-Fluck, D., … & Gundry, R. L. (2014). A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets. Stem Cell Reports. Шаблон:Doi
- ↑ Chan, D. A., Sutphin, P. D., Nguyen, P., Turcotte, S., Lai, E. W., Banh, A., … & Giaccia, A. J. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Science translational medicine, 3(94), 94ra70-94ra70.
- ↑ Lee, M. O., Moon, S. H., Jeong, H. C. et al. and Cha, H. J. (2013). Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. PNAS,110(35), E3281-E3290 doi:10.1073/pnas.1303669110
- ↑ Chad Tang, Irving L. Weissman, and Micha Drukker (2012) The Safety of Embryonic Stem Cell Therapy Relies on Teratoma Removal. Oncotarget; 3(1): 7-8.
- ↑ Julie Mathieu, Zhan Zhang, Angelique Nelson, et al. and Hannele Ruohola-Baker (2013) Hypoxia Induces Re-Entry of Committed Cells into Pluripotency. STEM CELLS Шаблон:DOI
- ↑ Chaffer, C.L., Brueckmann, I., Scheel, C., Kaestli, A.J., Wiggins, P.A., Rodrigues, L.O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. 108, 7950-7955
- ↑ Piyush B. Gupta, Christine M. Fillmore,Guozhi Jiang,Sagi D. Shapira,Kai Tao, Charlotte Kuperwasser,Eric S. Lander (2011) Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell, 146 (4), 633—644
- ↑ Fu W, Wang SJ, Zhou GD et al. and Zhang WJ. (2012) Residual undifferentiated cells during differentiation of induced pluripotent stem cells in vitro and in vivo. Stem Cells and Development, 21(4): 521—529. doi:10.1089/scd.2011.0131.
- ↑ Arvind Ravi, Peter B. Rahl, et al. and Phillip A. Sharp (2013) Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. Genes & Dev. 27(12): 941—954 doi:10.1101/gad.215376.113
- ↑ Hongran Wang , Xiaohong Wang, Xueping Xu, Thomas P. Zwaka, Austin J. Cooney (2013) Epigenetic Re-programming of the Germ Cell Nuclear Factor Gene is Required for Proper Differentiation of Induced Pluripotent Cells. STEM CELLS DOI: 10.1002/stem.1367
- ↑ Yijie Geng, Yongfeng Zhao, Lisa Corinna Schuster, et al., (2015). A Chemical Biology Study of Human Pluripotent Stem Cells Unveils HSPA8 as a Key Regulator of Pluripotency. Stem Cell Reports DOI: https://dx.doi.org/10.1016/j.stemcr.2015.09.023
- ↑ Zhang, J., Tian, X., Peng, C., Yan, C., Li, Y., Sun, M., … & Han, Y. (2018). Transplantation of CREG modified embryonic stem cells improves cardiac function after myocardial infarction in mice. Biochemical and biophysical research communications, 503(2), 482—489. Шаблон:DOI Шаблон:PMID
- ↑ Justine J Cunningham, Thomas M Ulbright, Martin F Pera & Leendert H J Looijenga (2012) Lessons from human teratomas to guide development of safe stem cell therapies. Nature Biotechnology, 30, 849—857 doi:10.1038/nbt.2329
- ↑ 157,0 157,1 Kazutoshi Takahashi and Shinya Yamanaka (2013) Induced pluripotent stem cells in medicine and biology Шаблон:Wayback. Development, 140, 2457—2461. DOI:10.1242/dev.092551
- ↑ Park, H. S., Hwang, I., Choi, K. A., Jeong, H., Lee, J. Y., & Hong, S. (2015).Generation of induced pluripotent stem cells without genetic defects by small molecules Шаблон:Wayback. Biomaterials, 39, 47-58 Шаблон:Doi
- ↑ Sergio Ruiz, Andres J. Lopez-Contreras, Mathieu Gabut et al., & Oscar Fernandez-Capetillo (2015). Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells Шаблон:Wayback. Nature Communications 6, Article number: 8036 Шаблон:Doi
- ↑ Ryoko Araki, Masahiro Uda, Yuko Hoki, et al. & Masumi Abe (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, (2013) doi:10.1038/nature11807
- ↑ Monya Baker (2013) Safety of induced stem cells gets a boost. Fears of immune response have been overestimated. Nature 493, 145 doi:10.1038/493145a
- ↑ M. Wahlestedt, G. L. Norddahl, G. Sten, et al. & D. Bryder (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood, DOI: 10.1182/blood-2012-11-469080
- ↑ Ohnishi, K., Semi, K., Yamamoto, T., Shimizu, M., Tanaka, A., Mitsunaga, K., … & Yamada, Y. (2014). Premature Termination of Reprogramming In Vivo Leads to Cancer Development through Altered Epigenetic Regulation. Cell, 156(4), 663—677. Шаблон:Doi
- ↑ Shibata, H., Komura, S., Yamada, Y., Sankoda, N., Tanaka, A., Ukai, T., … & Yamada, Y. (2018). In vivo reprogramming drives Kras-induced cancer development. Nature communications, 9(1), 1-16. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., … & Belmonte, J. C. I. (2016). In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell, 167(7), 1719—1733. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Singh, P. B., & Newman, A. G. (2018). Age reprogramming and epigenetic rejuvenation. Epigenetics & chromatin, 11(1), 1-7. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Hishida, T., Yamamoto, M., Hishida-Nozaki, Y., Shao, C., Huang, L., Wang, C., … & Belmonte, J. C. I. (2022). In vivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Reports, 39(4), 110730. Шаблон:Doi
- ↑ Olova, N., Simpson, D. J., Marioni, R. E., & Chandra, T. (2019). Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging cell, 18(1), e12877. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Gill, D., Parry, A., Santos, F., Hernando-Herraez, I., Stubbs, T. M., Milagre, I., & Reik, W. (2021). Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. bioRxiv.Шаблон:DOI
- ↑ Шаблон:Cite journal
- ↑ Macip, C. C., Hasan, R., Hoznek, V., Kim, J., Metzger, L. E., Sethna, S., & Davidsohn, N. (2023). Gene Therapy Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice. bioRxiv. Шаблон:Doi
- ↑ Melendez, E., Chondronasiou, D., Mosteiro, L., Martínez de Villarreal, J., Fernández-Alfara, M., Lynch, C. J., … & Serrano, M. (2022). Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development, 149(8), dev200361. Шаблон:PMID Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite web
- ↑ Ronquist, S., Patterson, G., Brown, M., Chen, H., Bloch, A., Muir, L., … & Rajapakse, I. (2017). Algorithm for Cellular Reprogramming. PNAS. Шаблон:Doi
- ↑ A New Algorithm Could Let Us Reprogram Any Cell Into Any Other Cell Type Шаблон:Wayback. Futurism
- ↑ Moreno-Moral, A. (April 2021). Defining Cell Culture Conditions to Drive Cell Identity and Scalability in Cell Therapy Шаблон:Wayback. European Biopharmaceutical Review. 43 — 45
- ↑ Offering a touch of computer magic to stem cell biologists Шаблон:Wayback. Duke-NUS Medical School Communications. MEDICUS. 2021(1)
- ↑ Kamaraj, U. S., Chen, J., Katwadi, K., Ouyang, J. F., Sun, Y. B. Y., Lim, Y. M., … & Rackham, O. J. (2020). EpiMogrify models H3K4me3 data to identify signaling molecules that improve cell fate control and maintenance. Cell Systems, 11(5), 509—522. Шаблон:PMID Шаблон:DOI
- ↑ Rukhlenko, O. S., Halasz, M., Rauch, N., Zhernovkov, V., Prince, T., Wynne, K., … & Kholodenko, B. N. (2022). Control of cell state transitions. Nature, 1-11. Шаблон:PMID Шаблон:DOI
- ↑ Joung, J., Ma, S., Tay, T., Geiger-Schuller, K. R., Kirchgatterer, P. C., Verdine, V. K., ... & Zhang, F. (2023). A transcription factor atlas of directed differentiation. Cell, 186(1), 209-229. Шаблон:PMID Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ 184,0 184,1 Koga, K., Wang, B., & Kaneko, S. (2020). Current status and future perspectives of HLA-edited induced pluripotent stem cells. Inflammation and Regeneration, 40(1), 23-29. Шаблон:Doi Шаблон:PMC Шаблон:PMID
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Shi, Z. D., Tchao, J., Wu, L., & Carman, A. J. Precision installation of a highly efficient suicide gene safety switch in human induced pluripotent stem cells. Stem cells translational medicine. Шаблон:PMID Шаблон:DOI
- ↑ 191,0 191,1 Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Wu, L., Zhao, G., Xu, S., Kuang, J., Ming, J., Wu, G., … & Liu, J. (2021). The nuclear factor CECR2 promotes somatic cell reprogramming by reorganizing the chromatin structure. Journal of Biological Chemistry, 296, 100022. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Vidal, S. E., Polyzos, A., Chatterjee, K., Ee, L. S., Swanzey, E., Morales-Valencia, J., … & Stadtfeld, M. (2020). Context-dependent requirement of euchromatic histone methyltransferase activity during reprogramming to pluripotency. Stem cell reports, 15(6), 1233—1245. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Deng, P., Yuan, Q., Cheng, Y., Li, J., Liu, Z., Liu, Y., … & Wang, C. Y. (2021). Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell. S1934-5909(21)00010-2 Шаблон:PMID Шаблон:DOI
- ↑ Wei J, Antony J, Meng F, MacLean P, Rhind R, Laible G, Oback B (2017) KDM4B‐mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Sci Rep 7: 7514 Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ 202,0 202,1 Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ MacCarthy CM, Malik V, Wu G, et al., & Velychko S (September 2022). «Enhancing Sox/Oct cooperativity induces higher-grade developmental reset» Шаблон:Wayback. bioRxiv. Шаблон:Doi
- ↑ Alvarez‐Palomo, A. B., Requena‐Osete, J., Delgado‐Morales, R., Moreno‐Manzano, V., Grau‐Bove, C., Tejera, A. M., … & Edel, M. J. (2021). A synthetic mRNA cell reprogramming method using CYCLIN D1 promotes DNA repair generating improved genetically stable human induced pluripotent stem cells Шаблон:Wayback. Stem Cells. Шаблон:PMID Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Hu, X., Wu, Q., Zhang, J., Kim, J., Chen, X., Hartman, A. A., … & Guo, S. (2021). Reprogramming progressive cells display low CAG promoter activity. STEM CELLS, 39(1), 43-54. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ NAKAUCHI Hiromitsu, KAMIYA Akihide, SUZUKI Nao, ITO Keiichi, YAMAZAKI Satoshi (2011) METHOD FOR PRODUCING CELLS INDUCED TO DIFFERENTIATE FROM PLURIPOTENT STEM CELLS Шаблон:Wayback PATENT COOPERATION TREATY APPLICATION, patno: WO2011071085 (A1) ― 2011-06-16 (C12N5/07)
- ↑ Chan, S., Arpke, R., Filareto, A., Xie, N., Pappas, M., & Penaloza, J. et al. (2018). Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. Cell Stem Cell, 23(1), 74-85.e6. Шаблон:Doi
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Masao Tsukada et al., (2017). In Vivo Generation of Engraftable Murine Hematopoietic Stem Cells by Gfi1b, c-Fos, and Gata2 Overexpression within Teratoma. Stem Cell Reports Шаблон:Doi
- ↑ Шаблон:Cite doi
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Gun-Sik Cho et al., (2017). Use of a neonatal rat system as a bioincubator to generate adult-like mature cardiomyocytes from human and mouse pluripotent stem cells. Nature Protocols 12, 2097—2109 Шаблон:Doi
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite doi
- ↑ Шаблон:Книга
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Carroll, S. H., Wigner, N. A., Kulkarni, N., Johnston-Cox, H., Gerstenfeld, L. C., and Ravid, K. (2012). A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J. Biol. Chem. 287, 15718-15727.
- ↑ Evans, B., & Ham, J. (2012). An emerging role for adenosine and its receptors in bone homeostasis. Frontiers in endocrinology, 3, 113.
- ↑ Heemin Kang, Yu-Ru V. Shih, Manando Nakasaki, Harsha Kabra and Shyni Varghese (2016). Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts Шаблон:Wayback. Science Advances, 2(8), e1600691 Шаблон:DOI
- ↑ Rossant, J. (2015). Mouse and human blastocyst-derived stem cells: vive les differences. Development, 142(1), 9-12. Шаблон:Doi
- ↑ Davidson, K. C., Mason, E. A., & Pera, M. F. (2015). The pluripotent state in mouse and human. Development, 142(18), 3090-3099. Шаблон:Doi
- ↑ Pastor, W.A., Chen, D., Liu, W., Kim, R., Sahakyan, A., Lukianchikov, A., Plath, K., Jacobsen, S.E., and Clark, A.T. (2016). Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory. Cell Stem Cell, 18(3), 323—329 DOI: https://dx.doi.org/10.1016/j.stem.2016.01.019
- ↑ Han Qin, Miroslav Hejna, Yanxia Liu, et al., & Miguel Ramalho-Santos (2016). YAP Induces Human Naive Pluripotency. Cell Reports. DOI: https://dx.doi.org/10.1016/j.celrep.2016.02.036
- ↑ Smagghe, B. J., Stewart, A. K., Carter, M. G., Shelton, L. M., Bernier, K. J., Hartman, E. J., … & DiNardo, B. A. (2013). MUC1* ligand, NM23-H1, is a novel growth factor that maintains human stem cells in a more naive state. PloS one, 8(3), e58601.
- ↑ Carter, M.G., Smagghe, B.J., Stewart, A.K., Rapley, J.A., Lynch, E., Bernier, K.J., Keating, K.W., Hatziioannou, V.M., Hartman, E.J. and Bamdad, C. C. (2016), A Primitive Growth Factor, NME7AB, Is Sufficient to Induce Stable Naïve State Human Pluripotency; Reprogramming in This Novel Growth Factor Confers Superior Differentiation. STEM CELLS. doi: 10.1002/stem.2261
- ↑ Zimmerlin, L., Park, T. S., Huo, J. S., Verma, K., Pather, S. R., Talbot, C. C., … & Guo, H. (2016). Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Development, 143(23), 4368-4380. Шаблон:Doi Шаблон:PMC
- ↑ Park, T.S., Zimmerlin, L., Evans-Moses, R. et al. (2020). Vascular progenitors generated from tankyrase inhibitor-regulated naïve diabetic human iPSC potentiate efficient revascularization of ischemic retina. Nat Commun 11, 1195 https://doi.org/10.1038/s41467-020-14764-5
- ↑ Jun Wu, Daiji Okamura, Mo Li, et al., & Juan Carlos Izpisua Belmonte (2015). An alternative pluripotent state confers interspecies chimaeric competency. Nature, Шаблон:DOI
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite pmid
- ↑ 261,0 261,1 261,2 Li Qian, Yu Huang, C. Ian Spencer, Amy Foley, Vasanth Vedantham, Lei Liu, Simon J. Conway, Ji-dong Fu & Deepak Srivastava. (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, Nature; 485, 593—598. Шаблон:DOI
- ↑ Eva Szabo, et al & Mickie Bhatia (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521—526 Шаблон:PMID Шаблон:DOI
- ↑ Jem A. Efe, et al & Sheng Ding (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy Nature Cell Biology 13, 215—222 Шаблон:PMID Шаблон:DOI
- ↑ 264,0 264,1 Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M.(2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. PNAS; 109(7), 2527—2532. doi: 10.1073/pnas.1121003109
- ↑ 265,0 265,1 Thier M, Wörsdörfer P, Lakes YB, et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012; 10(4),473-479 doi: 10.1016/j.stem.2012.03.003
- ↑ 266,0 266,1 Han DW, Tapia N., Hermann A., et al. & Schöler H.R. (2012) Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors. Cell Stem Cell, 10(4), 465—472, doi: 10.1016/j.stem.2012.02.021
- ↑ Taylor SM, Jones PA. (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell;17:771-779.
- ↑ Lassar AB, Paterson BM, Weintraub H. (1986) Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell.;47(5):649-56.
- ↑ Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987-1000.
- ↑ Weintraub, H., Tapscott, S. J., Davis, R. L., Thayer, M. J., Adam, M. A., Lassar, A. B. and Miller, A. D. (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell-lines by forced expression of Myod. Proc. Natl. Acad. Sci. U.S.A. 86, 5434-5438.
- ↑ Thomas Vierbuchen and Marius Wernig (2011) Direct Lineage Conversions: Unnatural but useful? Nat Biotechnol.; 29(10): 892—907. Шаблон:Doi.
- ↑ Han D.W., Tapia N., Hermann A., et al. & Schöler H.R. Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors.Stem Cells Dev. 2012 Mar 1;21(4):521-9. Шаблон:PMID Шаблон:DOI
- ↑ Bar-Nur O., et al.,& Hochedlinger K. (2018). Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. Stem Cell Reports, 10(5), 1505—1521 Шаблон:Doi
- ↑ Gatto, N., Dos Santos Souza, C., Shaw, A. C., Bell, S. M., Myszczynska, M. A., Powers, S., … & Azzouz, M. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell, e13281. https://doi.org/10.1111/acel.13281
- ↑ Prasad A, Boon Loong Teh D, Shah Jahan FR, Manivannan J, Chua SM, and All AH (2016). Direct Conversion through Trans-differentiation: Efficacy and Safety. Stem Cells and Development., Шаблон:Doi.
- ↑ Horisawa, K., & Suzuki, A. (2020). Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 96(4), 131—158. Шаблон:Doi Шаблон:PMC Шаблон:PMID
- ↑ Vashe Chandrakanthan et al., (2016). PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells Шаблон:Wayback. Proceedings of the National Academy of Sciences. Шаблон:Doi
- ↑ Scientists develop 'game changing' stem cell repair system Шаблон:Wayback. Stem Cells Portal
- ↑ Could this new stem cell become the game changer for regenerative treatments? Шаблон:Wayback. Irish Examiner
- ↑ Giurumescu, C. A., & Chisholm, A. D. (2011). Cell Identification and Cell Lineage Analysis. Caenorhabditis Elegans: Molecular Genetics and Development, 106, 323—341 https://dx.doi.org/10.1016/B978-0-12-544172-8.00012-8
- ↑ McGhee, J. D. (2013), The Caenorhabditis elegans intestine. WIREs Dev Biol, 2: 347—367. doi: 10.1002/wdev.93
- ↑ Riddle, M. R., Weintraub, A., Nguyen, K. C., Hall, D. H., & Rothman, J. H. (2013). Transdifferentiation and remodeling of post-embryonic C. elegans cells by a single transcription factor. Development, 140(24), 4844-4849 doi: 10.1242/dev.103010
- ↑ Стасевич К. (2013) Клетки могут сменить специализацию Шаблон:Wayback // Компьютерра
- ↑ Шаблон:Cite pmid
- ↑ Liu, P., Chen, M., Liu, Y., Qi, L. S., & Ding, S. (2018). CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency Шаблон:Wayback. Cell Stem Cell.Шаблон:Doi
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite doi
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ 291,0 291,1 Шаблон:Cite pmid
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite web
- ↑ Blanchard et al., & Baldwin (2017). Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries. Nature Biotechnology Шаблон:Doi
- ↑ Ito, N., & Ohta, K. (2015). Reprogramming of human somatic cells by bacteria Шаблон:Wayback. Development, growth & differentiation, 57(4), 305—312 Шаблон:PMID Шаблон:DOI
- ↑ Ribosomes Found to Induce Somatic Cell Pluripotency Шаблон:Wayback. Technology Networks. NEWS Feb 07, 2018
- ↑ Chapman S., Liu X., Meyers C., Schlegel R. and McBride A. A. (2010) Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J Clin Invest.;120(7):2619-2626. doi:10.1172/JCI42297
- ↑ Liu, X., Krawczyk, E., Suprynowicz, F. A., Palechor-Ceron, N., Yuan, H., Dakic, A., … & Lu, J. (2017). Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens Шаблон:Wayback. Nature protocols, 12(2), 439—451 Шаблон:Doi
- ↑ Hiew, Y.-L. (2011) Шаблон:Wayback Examining the biological consequences of DNA damage caused by irradiated J2-3T3 fibroblast feeder cells and HPV16: characterisation of the biological functions of Mll. Doctoral thesis, UCL (University College London)
- ↑ Irena Szumiel (2012) Radiation hormesis: Autophagy and other cellular mechanisms International Journal of Radiation Biology. 88(9), 619—628 doi:10.3109/09553002.2012.699698
- ↑ Hiroshi Kurosawa (2012) Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells. Journal of Bioscience and Bioengineering, 114(6), 577—581 Шаблон:Doi
- ↑ Toshimasa Ishizaki, Masayoshi Uehata, Ichiro Tamechika, et al. and Shuh Narumiya (2000) Pharmacological Properties of Y-27632, a Specific Inhibitor of Rho-Associated Kinases Шаблон:Wayback. Molecular Pharmacology. 57(5), 976—998
- ↑ So S, Lee Y, Choi J, Kang S, Lee J-Y, Hwang J, et al. (2020) The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research. PLoS ONE 15(5): e0233057. https://doi.org/10.1371/journal.pone.0233057
- ↑ Terunuma A, Limgala RP, Park CJ, Choudhary I, Vogel JC. (2010) Efficient procurement of epithelial stem cells from human tissue specimens using a Rho-associated protein kinase inhibitor Y-27632. Tissue Eng Part A. ;16(4):1363-1368 doi: 10.1089/ten.tea.2009.0339
- ↑ Suprynowicz F. A., Upadhyay G., Krawczyk E., et al. and Richard Schlegel. (2012) Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. PNAS, DOI: 10.1073/pnas.1213241109
- ↑ Xuefeng Liu, Virginie Ory, Sandra Chapman, et al. & Richard Schlegel (2012) ROCK Inhibitor and Feeder Cells Induce the Conditional Reprogramming of Epithelial Cells. The American Journal of Pathology, 180(2), 599—607 Шаблон:Doi
- ↑ Seema Agarwal, David L. Rimm (2012) Making Every Cell Like HeLa: A Giant Step For Cell Culture. The American Journal of Pathology, 180(2), 443—445 Шаблон:Doi
- ↑ Palechor-Ceron N, Suprynowicz FA, Upadhyay G, et al. & Schlegel R, Liu X. (2013) Radiation Induces Diffusible Feeder Cell Factor(s) That Cooperate with ROCK Inhibitor to Conditionally Reprogram and Immortalize Epithelial Cells. Am J Pathol.; 183(6), 1862—1870. doi: 10.1016/j.ajpath.2013.08.009
- ↑ Yann Barrandon, Nicolas Grasset, Andrea Zaffalon, et al. & Ariane Rochat (2012) Capturing epidermal stemness for regenerative medicine. Seminars in Cell & Developmental Biology. 23(8), 937—944 Шаблон:Doi
- ↑ Wu, X., Wang, S., Li, M., Li, J., Shen, J., Zhao, Y., … & Kaboli, P. J. (2020). Conditional reprogramming: next generation cell culture. Acta Pharmaceutica Sinica B. 10(8), 1360—1381 Шаблон:Doi
- ↑ Hang Yuan, Scott Myers, Jingang Wang, et al & Richard Schlegel. (2012) Use of Reprogrammed Cells to Identify Therapy for Respiratory Papillomatosis. New England Journal of Medicine; 367 (13): 1220—1227 DOI:10.1056/NEJMoa1203055
- ↑ Sukhbir Kaur, David R. Soto-Pantoja, Erica V. Stein et al. & David D. Roberts.(2013) Thrombospondin-1 Signaling through CD47 Inhibits Self-renewal by Regulating c-Myc and Other Stem Cell Transcription Factors Шаблон:Wayback. Scientific Reports; 3, Article number: 1673 Шаблон:DOI
- ↑ Soto-Pantoja, D. R., Ridnour, L. A., Wink, D. A. & Roberts, D. D. (2013) Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Sci Rep 3, 1038 Шаблон:Doi
- ↑ 316,0 316,1 Leo Kurian, Ignacio Sancho-Martinez, Emmanuel Nivet, et al. & Juan Carlos Izpisua Belmonte (2012) Conversion of human fibroblasts to angioblast-like progenitor cells. Nature Methods. doi:10.1038/nmeth.2255
- ↑ Wang, Y. C., Nakagawa, M., Garitaonandia. et al. & Loring, J. F. (2011). Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis.Cell research, 21(11), 1551—1563. doi: 10.1038/cr.2011.148
- ↑ Zhang, X., Stojkovic, P., Przyborski, S.,et al. and Stojkovic, M. (2006), Derivation of Human Embryonic Stem Cells from Developing and Arrested Embryos. STEM CELLS, 24: 2669—2676. Шаблон:Doi
- ↑ Tateno, H., Matsushima, A., Hiemori, K., et al., & Hirabayashi, J. (2013). Podocalyxin is a glycoprotein ligand of the human pluripotent stem cell-specific probe rBC2LCN. Stem cells translational medicine, 2(4), 265—273. Шаблон:Doi
- ↑ Suila Heli, Hirvonen Tia, Ritamo Ilja, et al. and Valmu Leena. (2014). Extracellular O-Linked N-Acetylglucosamine Is Enriched in Stem Cells Derived from Human Umbilical Cord Blood. BioResearch, 3(2): 39-44. Шаблон:Doi
- ↑ Perdigoto, C. N., & Bardin, A. J. (2013). Sending the right signal: Notch and stem cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(2), 2307—2322. https://dx.doi.org/10.1016/j.bbagen.2012.08.009
- ↑ Jafar-Nejad, H., Leonardi, J., & Fernandez-Valdivia, R. (2010). Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology, 20(8), 931—949. Шаблон:Doi
- ↑ Frederico Alisson-Silva, Deivid de Carvalho Rodrigues, Leandro Vairo, et al. and Adriane R Todeschini (2014). Evidences for the involvement of cell surface glycans in stem cell pluripotency and differentiation. Glycobiology 24 (5): 458—468. Шаблон:Doi
- ↑ Hasehira, K., Tateno, H., Onuma, Y., Ito, Y., Asashima, M., & Hirabayashi, J. (2012). Structural and Quantitative Evidence for Dynamic Glycome Shift on Production of Induced Pluripotent Stem Cells. Molecular & Cellular Proteomics,11(12), 1913—1923. Шаблон:Doi
- ↑ Becker-Kojic, Z. A., & Terness, P. (2002). A novel human erythrocyte GPI anchored glycoprotein ACA. Isolation, purification, primary structure determination, molecular parameters of its lipid structure. . Journal of Biological Chemistry, 277, 40472-40478. Шаблон:Doi
- ↑ Z.A.Becker-Kojič, J.Ureña-Peralta, R.Saffrich et al. & M.Stojkovič (2013) Новый гликопротеин АСА — основной регулятор гемопоэза человека. КЛЕТОЧНЫЕ ТЕХНОЛОГИИ В БИОЛОГИИ И МЕДИЦИНЕ, 9(2), 69-84
- ↑ Z.A.Becker-Kojič, J.R.Ureña-Peralta, I.Zipančić, et al. & M.Stojkovič (2013) Активация поверхностного гликопротеина АСА индуцирует плюрипотентность гемопоэтических клеток-предшественников. КЛЕТОЧНЫЕ ТЕХНОЛОГИИ В БИОЛОГИИ И МЕДИЦИНЕ, 9(2), 85-101
- ↑ Mikkola, M. (2013) Human pluripotent stem cells: glycomic approaches for culturing and characterization Шаблон:Wayback. http://urn.fi/URN:ISBN Шаблон:Webarchive 978-952-10-8444-7
- ↑ Zheng, Z., Jian, J., Zhang, X., Zara, J. N., Yin, W., Chiang, M., … & Soo, C. (2012). Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 33(24), 5821-5831. Шаблон:PMID Шаблон:DOI
- ↑ Yang, P., Li, C., Lee, M., Marzvanyan, A., Zhao, Z. H., Ting, K., … & Zheng, Z. (2020). Photopolymerizable hydrogel encapsulated fibromodulin-reprogrammed cells for muscle regeneration. Tissue engineering. Part A. https://doi.org/10.1089/ten.tea.2020.0026
- ↑ Zheng, Z., Li, C., Ha, P., Chang, G. X., Yang, P., Zhang, X., … & Mills, Z. (2019). CDKN2B upregulation prevents teratoma formation in multipotent fibromodulin-reprogrammed cells. Journal of Clinical Investigation, 129(8), 3236-3251. Шаблон:Doi Шаблон:PMC Шаблон:PMID
- ↑ Obokata, Haruko; et al. (2014). Stimulus-triggered fate conversion of somatic cells into pluripotency Шаблон:Webarchive. Nature 505(7485): 641—647.doi:10.1038/nature12968
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Torben Redmer, Sebastian Diecke, Tamara Grigoryan, Angel Quiroga-Negreira, Walter Birchmeier, Daniel Besser (2011) E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO reports , 12, 720—726, doi:10.1038/embor.2011.88
- ↑ Bedzhov, I., Alotaibi, H., Basilicata, M. F. et al.., & Stemmler, M. P. (2013). Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency. Stem cell research, 11(3), 1250—1263 https://dx.doi.org/10.1016/j.scr.2013.08.009.
- ↑ Guannan Su, Yannan Zhao, Jianshu Wei, et al. & Jianwu Dai (2013) Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials, 34(24), 5897-5906 Шаблон:Doi
- ↑ Yongqing Liu, Brian Clem, Ewa K. Zuba-Surma, et al. & Douglas C. Dean (2009) Mouse Fibroblasts Lacking RB1 Function Form Spheres and Undergo Reprogramming to a Cancer Stem Cell Phenotype. Cell Stem Cell, 4(4), 336—347
- ↑ Hein te Riele (2009) Recreating Stem Cells: A Novel Entrance to the Fountain of Youth. Cell Stem Cell, 4(4), 279—280
- ↑ Nath S. C., Day B., Harper L., et al., & Rancourt D. E. (2021). Fluid Shear Stress Promotes Embryonic Stem Cell Pluripotency via Interplay between β‐catenin and Vinculin in Bioreactor Culture. Stem Cells, Шаблон:Doi
- ↑ Timothy L. Downing, Jennifer Soto, Constant Morez, Timothee Houssin, Ashley Fritz, Falei Yuan, Julia Chu, Shyam Patel, David V. Schaffer, Song Li. Biophysical regulation of epigenetic state and cell reprogramming. Nature Materials, 2013; Шаблон:DOI
- ↑ Yubing Sun, Koh Meng Aw Yong, Luis G. Villa-Diaz, et al. & Jianping Fu(2014). Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nature Materials Шаблон:Doi
- ↑ Romero, L. O., Massey, A. E., Mata-Daboin, A. D., Sierra-Valdez, F. J., Chauhan, S. C., Cordero-Morales, J. F., & Vásquez, V. (2019). Dietary fatty acids fine-tune Piezo1 mechanical response. Nature communications, 10(1), 1200. Шаблон:Doi Шаблон:PMC
- ↑ Guilak, F., Cohen, D. M., Estes, B. T., et al. & Chen, C. S. (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell stem cell, 5(1), 17-26. doi: 10.1016/j.stem.2009.06.016
- ↑ Worley, K., Certo, A., & Wan, L. Q. (2013). Geometry-Force Control of Stem Cell Fate. BioNanoScience, 3(1), 43-51. Шаблон:DOI
- ↑ Aminuddin, N. I., Ahmad, R., Akbar, S. A., & Murphy, B. P. (2016). Osteoblast and stem cell response to nanoscale topographies: a review. Science and Technology of Advanced Materials, 17(1), 1-43, Шаблон:Doi
- ↑ Massimiliano Caiazzo, Yuya Okawa, Adrian Ranga, Alessandra Piersigilli, Yoji Tabata, Matthias P. Lutolf (2016). Defined three-dimensional microenvironments boost induction of pluripotency. Nature Materials, Шаблон:DOI
- ↑ Roy, B., Yuan, L., Lee, Y., Bharti, A., Mitra, A., & Shivashankar, G. V. (2020). Fibroblast rejuvenation by mechanical reprogramming and redifferentiation. Proceedings of the National Academy of Sciences, 117(19), 10131-10141 Шаблон:Doi Шаблон:PMC Шаблон:PMID
- ↑ Ankur Singh, Shalu Suri, Ted Lee, et al. & Andrés J García (2013). Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nature Methods, 10, 438—444 Шаблон:Doi
- ↑ Sheng C, Zheng Q, Wu J, et al. and Qi Zhou (2012) Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Res; 22:769-772. doi:10.1038/cr.2012.32
- ↑ Mingliang Zhang , Yuan-Hung Lin , Yujiao Jennifer Sun , Saiyong Zhu10 , Jiashun Zheng , Kai Liu , Nan Cao , Ke Li , Yadong Huang , Sheng Ding (2016). Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell, DOI: https://dx.doi.org/10.1016/j.stem.2016.03.020
- ↑ Lin Cheng, Wenxiang Hu, Binlong Qiu et al. and Gang Pei (2014). Generation of neural progenitor cells by chemical cocktails and hypoxia Шаблон:Wayback. Cell Research Шаблон:Doi
- ↑ Eva C. Thomaemail, Claudia Merkl, Tobias Heckel, Rachel Haab, Frederic Knoflach, Corinne Nowaczyk, Nicholas Flint, Ravi Jagasia, Sannah Jensen Zoffmann, Hoa Hue Truong, Pascal Petitjean, Sebastian Jessberger, Martin Graf, Roberto Iacone(2014). Chemical Conversion of Human Fibroblasts into Functional Schwann Cells. Stem Cell Reports, 3(4), 539—547, DOI: https://dx.doi.org/10.1016/j.stemcr.2014.07.014
- ↑ 355,0 355,1 Olof Torper, Ulrich Pfisterer, Daniel A. Wolf, et al. and Malin Parmar (2013) Generation of induced neurons via direct conversion in vivo. PNAS, DOI:10.1073/pnas.1303829110
- ↑ Wenze Niu, Tong Zang, Yuhua Zou, Sanhua Fang, Derek K. Smith, Robert Bachoo, Chun-Li Zhang. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nature Cell Biology, 2013; 15 (10): 1164 Шаблон:DOI
- ↑ Zhida Su, Wenze Niu, Meng-Lu Liu, Yuhua Zou, Chun-Li Zhang. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nature Communications, 2014; 5 Шаблон:DOI
- ↑ Paul Luemai, Grace Woodruff, Yaozhi Wang, et al. & Mark H. Tuszynski. (2014). Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells after Spinal Cord Injury. Neuron, DOI: https://dx.doi.org/10.1016/j.neuron.2014.07.014
- ↑ Takayuki Kondo, Misato Funayama Kayoko Tsukita et al. & Haruhisa Inoue (2014). Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice. Stem Cell Reports. 3(2), 242—249 DOI: https://dx.doi.org/10.1016/j.stemcr.2014.05.017
- ↑ Caiazzo, M., Giannelli, S., Valente, P., Lignani, G., Carissimo, A., Sessa, A., … & Broccoli, V. (2015). Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors. Stem Cell Reports. 4(1), 25-36, DOI: https://dx.doi.org/10.1016/j.stemcr.2014.12.002
- ↑ Liu G-H, Yi F, Suzuki K, Qu J. and Izpisua Belmonte J C. (2012) Induced neural stem cells: a new tool for studying neural development and neurological disorders. Cell Research 22, 1087—1091. Шаблон:Doi
- ↑ Fadi J Najm, Angela M Lager, Anita Zaremba, et al. & Paul J Tesar (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nature Biotechnology, doi:10.1038/nbt.2561
- ↑ Nan Yang, J Bradley Zuchero, Henrik Ahlenius, et al. & Marius Wernig (2013) Generation of oligodendroglial cells by direct lineage conversion. Nature Biotechnology, doi:10.1038/nbt.2564
- ↑ Panagiotis Douvaras, Jing Wang, Matthew Zimmer, et al. & Valentina Fossatiemail (2014). Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells. Stem Cell Reports. 3(2), 250—259, DOI: https://dx.doi.org/10.1016/j.stemcr.2014.06.012
- ↑ Chunhui (2012) Turning cardiac fibroblasts into cardiomyocytes in vivo Trends in Molecular Medicine, doi:10.1016/j.molmed.2012.06.009
- ↑ Chen J X., Krane M, Deutsch M-A, et al. and Sean M. Wu (2012)Inefficient Reprogramming of Fibroblasts into Cardiomyocytes Using Gata4, Mef2c, and Tbx5. Circulation Research.;111: 50-55, doi:10.1161/CIRCRESAHA.112.270264
- ↑ Ji-Dong Fu, Nicole R. Stone, Lei Liu, et al. & Deepak Srivastava (2013) Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. Stem Cell Reports, doi: 10.1016/j.stemcr.2013.07.005
- ↑ Miyamoto et al., & Ieda (2017) Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction. Cell Stem Cell, Шаблон:Doi
- ↑ Paul W. Burridge, Gordon Keller, Joseph D. Gold, Joseph C. Wu (2012) Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming Review Article Cell Stem Cell, 10(1), 16-28
- ↑ Zhang, Y., Cao, N., Huang, Y., Spencer, C.I., et al., & Srivastava D., Ding S. (2016). Expandable Cardiovascular Progenitor Cells Reprogrammed from Fibroblasts. Cell Stem Cell, 18(3), 368—381, DOI: https://dx.doi.org/10.1016/j.stem.2016.02.001
- ↑ Lalit, P.A., Salick, M.R., Nelson, D.O., et al. & Kamp T.J.(2016). Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors. Cell Stem Cell, 18(3), 354—367 DOI: https://dx.doi.org/10.1016/j.stem.2015.12.001
- ↑ Carpenter L. et al. and Watt S. M.(2012) Efficient Differentiation of Human Induced Pluripotent Stem Cells Generates Cardiac Cells That Provide Protection Following Myocardial Infarction in the Rat. Stem Cells and Development. 21(6): 977—986. doi:10.1089/scd.2011.0075
- ↑ Xiaojun Lian, Cheston Hsiao, Gisela Wilson, Et al and Sean P. Palecek (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. PNAS 2012 109 (27) E1848-E1857,doi:10.1073/pnas.1200250109.
- ↑ Шаблон:Cite web
- ↑ Satsuki Yamada, Timothy J. Nelson, Garvan C. Kane et al. & Andre Terzic (2013) iPS Cell Intervention Rescues Wall Motion Disparity Achieving Biological Cardiac Resynchronization Post-Infarction.The Journal of Physiology, 591, 4335-4349.; DOI:10.1113/jphysiol.2013.252288
- ↑ Y-F. Hu, J. F. Dawkins, H. C. Cho, E. Marbán, E. Cingolani, (2014).Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block Шаблон:Wayback. Sci. Transl. Med. 6, 245ra94
- ↑ Haixia Wang, Nan Cao, C. Ian Spencer, Baoming Nie, Tianhua Ma, Tao Xu, Yu Zhang, Xiaojing Wang, Deepak Srivastava, ShengDing (20 February 2014).Small Molecules Enable Cardiac Reprogramming of Mouse Fibroblasts with a Single Factor, Oct4. Cell Reports, doi: 10.1016/j.celrep.2014.01.038
- ↑ Nan Cao, Yu Huang, Jiashun Zheng et al & Deepak Srivastava, Sheng Ding (2016). Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science, Шаблон:DOI
- ↑ Scientists Turn Skin Cells into Heart Cells and Brain Cells Using Drugs Шаблон:Wayback. GLADSTONE INSTITUTES. News Center
- ↑ Huang, C., Tu, W., Fu, Y., Wang, J., & Xie, X. (2018). Chemical-induced cardiac reprogramming in vivo Шаблон:Wayback. Cell research, Шаблон:Doi
- ↑ Tung-Ying Lu, Bo Lin, Jong Kim, et al. & Lei Yang (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nature Communications, 4, Article number: 2307 doi:10.1038/ncomms3307
- ↑ Подробный обзор: Budniatzky, I., & Gepstein, L. (2014). Concise Review: Reprogramming Strategies for Cardiovascular Regenerative Medicine: From Induced Pluripotent Stem Cells to Direct Reprogramming Шаблон:Архивировано. Stem cells translational medicine, 3(4), 448—457. Шаблон:Doi
- ↑ Pushp, P., Nogueira, D. E., Rodrigues, C. A., Ferreira, F. C., Cabral, J. M., & Gupta, M. K. (2020). A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Reviews and Reports, 1-29. Шаблон:PMID Шаблон:DOI
- ↑ Funakoshi, S., Yoshida, Y. (2021). Recent progress of iPSC technology in cardiac diseases. Arch Toxicol 95, 3633-3650 Шаблон:Doi
- ↑ Gun-Sik Cho, Dong I. Lee, et al., & Daniel P. Judge, David A. Kass, Chulan Kwon.(2017). Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy. Cell Reports, 18(2): 571—582 Шаблон:DOI
- ↑ Benjamin D Cosgrove, Penney M Gilbert, Ermelinda Porpiglia et al. & Helen M Blau (Feb. 2014). Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nature Medicine, Шаблон:Doi
- ↑ Sousa-Victor, P., Gutarra, S., García-Prat, L., et al. & Muñoz-Cánoves, P. (2014). Geriatric muscle stem cells switch reversible quiescence into senescence. Nature, 506(7488), 316—321 Шаблон:Doi
- ↑ Hosoyama, et al. and Masatoshi Suzuki (March, 2014). Derivation of Myogenic Progenitors Directly From Human Pluripotent Stem Cells Using a Sphere-Based Culture. Stem Cells Trans Med. Шаблон:Doi
- ↑ Castell JV, Gomez-Lechon MJ. Liver cell culture techniques. Methods Mol Biol 2009; 481: 35-46.
- ↑ David C. Hay. (2013)Rapid and Scalable Human Stem Cell Differentiation: Now in 3D. Stem Cells and Development. doi:10.1089/scd.2013.1500.
- ↑ Sgodda, M.; Mobus, S.; Hoepfner, J et al. & Cantz, T. (2013) Improved Hepatic Differentiation Strategies for Human Induced Pluripotent Stem Cells. Current Molecular Medicine, 13(5), 842—855
- ↑ Chen, Y.-F., Tseng, C.-Y., Wang, H.-W., Kuo, H.-C., Yang, V. W. and Lee, O. K. (2012), Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 55: 1193—1203. doi: 10.1002/hep.24790
- ↑ Massoud Vosough, Eskandar Omidinia, Mahdi Kadivar et al. and Hossein Baharvand (2013) Generation of Functional Hepatocyte-like Cells from Human Pluripotent Stem Cells in a Scalable Suspension Culture. Stem Cells and Development. doi:10.1089/scd.2013.0088
- ↑ Si-Tayeb, K., Noto, F. K., Nagaoka, M., et al. and Duncan, S. A. (2010), Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51: 297—305. doi: 10.1002/hep.23354
- ↑ Sullivan, G. J., Hay, D. C., Park, I.-H., et al. and Wilmut, I. (2010), Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 51: 329—335. doi: 10.1002/hep.23335
- ↑ Liu H, Ye Z, Kim Y, Sharkis S, Jang YY. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 2010; 51: 1810-9.
- ↑ Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011; 475: 390—393
- ↑ Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011;475: 386-9
- ↑ Jing Shan, Robert E Schwartz, Nathan T Ross, et al. & Sangeeta N Bhatia (2013) Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nature Chemical Biology doi:10.1038/nchembio.1270
- ↑ Takayama K., Nagamoto Y., Mimura N., et al. & Mizuguchi H. (2013) Long-Term Self-Renewal of Human ES/iPS-Derived Hepatoblast-like Cells on Human Laminin 111-Coated Dishes. Stem Cell Reports, doi: 10.1016/j.stemcr.2013.08.006
- ↑ Cameron K., Tan R., Schmidt-Heck W., et al & Hay D.C. (2015). Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes. Stem Cell Reports DOI: https://dx.doi.org/10.1016/j.stemcr.2015.10.016
- ↑ Ruiz J. C., Ludlow J. W., Sherwood S., et al. and Gimble J. M. (2010) Differentiated human adipose-derived stem cells exhibit hepatogenic capability in vitro and in vivo. J. Cell. Physiol., 225(2), 429—436 DOI: 10.1002/jcp.22216 22216
- ↑ Lis, V. M., & Castell, J. V. (2013) Adipose Tissue: A New Source of Hepatic Cells Шаблон:Wayback. Biomaterials for Stem Cell Therapy: State of Art and Vision for the Future, 249—278
- ↑ Xu, Dan ; Nishimura, Toshihiko ; Zheng, Ming et al. & Peltz, Gary (2013) Enabling Autologous Human Liver Regeneration With Differentiated Adipocyte Stem Cells. Cell Transplantation
- ↑ Ngan F. Huang (2013) Tissue Engineering and Regenerative Medicine: Role of Extracellular Matrix Microenvironment. Stem Cells and Cancer Stem Cells, 9, 313—323 DOI 10.1007/978-94-007-5645-8_30
- ↑ Maher JJ, Bissell DM. (1993) Cell-matrix interactions in liver. Semin Cell Biol ; 4(3): 189—201 Шаблон:Doi
- ↑ Takanori Takebe, Keisuke Sekine, Masahiro Enomura, et al. & Hideki Taniguchi (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature doi:10.1038/nature12271
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Saiyong Zhu, Milad Rezvani, Jack Harbell, et al. & Sheng Ding (2014). Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature, doi:10.1038/nature13020
- ↑ Huang, P., Zhang, L., Gao, Y., He, Z., Yao, D., Wu, Z., … & Hui, L. (2014). Direct Reprogramming of Human Fibroblasts to Functional and Expandable Hepatocytes. Cell stem cell, 14(3), 370—384. Шаблон:Doi
- ↑ Dean Yimlamai, Constantina Christodoulou, Giorgio G. Galli, et al., & Fernando D. Camargoemai (2014). Hippo Pathway Activity Influences Liver Cell Fate Шаблон:Wayback. Cell, 157(6), 1324—1338 DOI: https://dx.doi.org/10.1016/j.cell.2014.03.060
- ↑ Katsuda T, Kawamata M, Hagiwara K, Takahashi R, Yamamoto Y, Camargo FD, Ochiya T (). Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity. Cell Stem Cell, Шаблон:Doi
- ↑ Miyajima, A., Tanaka, M., & Itoh, T. (2014). Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming. Cell Stem Cell, 14(5), 561—574. DOI: https://dx.doi.org/10.1016/j.stem.2014.04.010
- ↑ Saiyong Zhu, Holger A. Russ, Xiaojing Wang, Mingliang Zhang, Tianhua Ma, Tao Xu, Shibing Tang, Matthias Hebrok, Sheng Ding. Human pancreatic beta-like cells converted from fibroblasts. Nature Communications, 2016; 7: 10080 Шаблон:DOI
- ↑ Abdelalim, E. M., Bonnefond, A., Bennaceur-Griscelli, A., & Froguel, P. (2014). Pluripotent Stem Cells as a Potential Tool for Disease Modelling and Cell Therapy in Diabetes. Stem Cell Reviews and Reports, 1-11. Шаблон:DOI
- ↑ Hrvatin, S., O’Donnell, C. W., Deng, F., et al. & Melton, D. A. (2014). Differentiated human stem cells resemble fetal, not adult, β cells. Proceedings of the National Academy of Sciences, 111(8), 3038-3043. Шаблон:Doi
- ↑ Akinci E, Banga A, Tungatt K, et al. and Slack, J.M. (2013). Reprogramming of Various Cell Types to a Beta-Like State by Pdx1, Ngn3 and MafA Шаблон:Wayback. PLoS ONE 8(11): e82424. Шаблон:Doi
- ↑ Chen, Y. J., Finkbeiner, S. R., Weinblatt, D., et al. & Stanger, B. Z. (2014). De Novo Formation of Insulin-Producing «Neo-β Cell Islets» from Intestinal Crypts. Cell Reports., Шаблон:Doi
- ↑ Yin L, Ohanyan V, Pung Y F, and Chilian W M. (2012) Induction of Vascular Progenitor Cells From Endothelial Cells Stimulates Coronary Collateral Growth. Circulation Research.;110:241-252, doi:10.1161/CIRCRESAHA.111.250126
- ↑ American Heart Association (2012, July 25). Adult stem cells from liposuction used to create blood vessels in the lab. ScienceDaily.
- ↑ Rekha Samuel, Laurence Daheron, Shan Liao, et al. and Rakesh K. Jain (2013) Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. PNAS doi:10.1073/pnas.1310675110
- ↑ Lior Zangi, Kathy O Lui, Alexander von Gise, et al. & Kenneth R Chien.(2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology,; DOI:10.1038/nbt.2682
- ↑ Nutan Prasain, Man Ryul Lee, Sasidhar Vemula et al., & Mervin C Yoder (2014)/ Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nature Biotechnology. Шаблон:Doi
- ↑ Caroline E. Hendry, Jessica M. Vanslambrouck, Jessica Ineson, et al. and Melissa H. Little (2013) Direct Transcriptional Reprogramming of Adult Cells to Embryonic Nephron Progenitors. JASN ASN.2012121143; ,doi:10.1681/ASN.2012121143
- ↑ Xinaris C, Benedetti V, Rizzo P, et al. and Giuseppe Remuzzi (2012) In vivo maturation of functional renal organoids formed from embryonic cell suspensionsШаблон:Недоступная ссылка. J Am Soc Nephrol 23: 1857—1868, doi: 10.1681/ASN.2012050505
- ↑ Pereira, C. F., Chang, B., Qiu, J., Niu, X., Papatsenko, D., Hendry, C. E., … & Moore, K. (2013). Induction of a hemogenic program in mouse fibroblasts. Cell stem cell, 13(2), 205—218. DOI: https://dx.doi.org/10.1016/j.stem.2013.05.024
- ↑ Jonah Riddell, Roi Gazit, Brian S. Garrison, et al., & Derrick J. Rossi (2014). Reprogramming Committed Murine Blood Cells to Induced Hematopoietic Stem Cells with Defined Factors. Cell, 157(30, 549—564, DOI: https://dx.doi.org/10.1016/j.cell.2014.04.006
- ↑ Е. С. Филоненко, М. А. Лагарькова, С. Л. Киселёв (2013) ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ПЛЮРИПОТЕНТНЫХ СТВОЛОВЫХ КЛЕТОК ЧЕЛОВЕКА ДЛЯ ПОЛУЧЕНИЯ КОМПОНЕНТОВ КРОВИ: ЭРИТРОПОЭЗ Шаблон:Wayback. КТТИ, 8(2), 6-12 PDF
- ↑ Focosi, D., Amabile, G., Di Ruscio, A., Quaranta, P., Tenen, D. G., & Pistello, M. (2014).Induced pluripotent stem cells in hematology: current and future applications Шаблон:Wayback. Blood Cancer Journal (2014) 4, e211; doi:10.1038/bcj.2014.30
- ↑ Zeuner, A., Martelli, F., et al. and Migliaccio, A. R. (2012), Concise Review: Stem Cell-Derived Erythrocytes as Upcoming Players in Blood Transfusion. STEM CELLS, 30: 1587—1596. doi: 10.1002/stem.1136
- ↑ Rousseau, G. F., Mazurier, C. and Douay, L. (2016), Culturing red blood cells from stem cells: a solution to present and future challenges of transfusion medicine?. ISBT Science Series, 11: 111—117. Шаблон:Doi
- ↑ Giarratana MC, Rouard H, Dumont A, et al & Luc Douay (2011) Proof of principle for transfusion of in vitro generated red blood cells. Blood; 118(19): 5071-5079. doi: 10.1182/blood-2011-06-362038.
- ↑ Hirose Sho-ichi, Takayama Naoya, Nakamura Sou, et al. & Eto Koji (2013) Immortalization of Erythroblasts by c-MYC and BCL-XL Enables Large-Scale Erythrocyte Production from Human Pluripotent Stem Cells. Stem Cell Reports, doi: 10.1016/j.stemcr.2013.10.010
- ↑ Ladan Kobari, Frank Yates, Noufissa Oudrhiri et al. and Luc Douay (2012) Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica. 2012; 97:xxx DOI: 10.3324/haematol.2011.055566
- ↑ Keerthivasan Ganesan , Wickrema A, and Crispino J D (2011) Erythroblast Enucleation Stem Cells Int.; 2011: 139851. doi: 10.4061/2011/139851
- ↑ Emmanuel Olivier, Caihong Qiu, Eric E. Bouhassira (2012) Protocols and Manufacturing for Cell-Based Therapies Novel, High-Yield Red Blood Cell Production Methods from CD34-Positive Cells Derived from Human Embryonic Stem, Yolk Sac, Fetal Liver, Cord Blood, and Peripheral Blood. Stem Cells Trans Med first published on August 2, 2012;doi:10.5966/sctm.2012-0059
- ↑ См. также: Migliaccio AR, Whitsett C, Papayannopoulou T, Sadelain M. (2012) The potential of stem cells as an in vitro source of red blood cells for transfusion. Шаблон:Wayback Review. Cell Stem Cell.;10(2):115-9
- ↑ Giani, F. C., Fiorini, C., Wakabayashi, A., Ludwig, L. S., Salem, R. M., Jobaliya, C. D., … & Guo, M. H. (2016). Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells. Cell stem cell, 18(1), 73-78 Шаблон:Doi
- ↑ Stanford, E. A., Wang, Z., Novikov, O., Mulas, F., Landesman-Bollag, E., Monti, S., … & Sherr, D. H. (2016). The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC biology, 14(1), 1. Шаблон:DOI
- ↑ Brenden W. Smith, Sarah S. Rozelle, Amy Leung, et al and George J. Murphy (2013) The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. Blood, blood-2012-11-466722, Шаблон:Doi
- ↑ Sivalingam J., at al., & Oh S.K.W. (2020). A Scalable Suspension Platform for Generating High-Density Cultures of Universal Red Blood Cells from Human Induced Pluripotent Stem Cells. Stem Cell Reports (in press) Шаблон:Doi
- ↑ Rousseau, G. F., Mazurier, C., & Douay, L. (2016). Culturing red blood cells from stem cells: a solution to present and future challenges of transfusion medicine? Шаблон:Wayback. ISBT Science Series, 11(S1), 111—117. Шаблон:Doi
- ↑ Mao, B., Lu, X., Huang, S., Yu, J., Lai, M., Tsuji, K., … & Ma, F. (2015). Derivation of Mature Erythrocytes from Human Pluripotent Stem Cells by Coculture with Murine Fetal Stromal Cells. In Hematopoietic Differentiation of Human Pluripotent Stem Cells (pp. 15-39). Springer Netherlands. Шаблон:DOI
- ↑ Fujita, A., Uchida, N., Haro-Mora, J. J., Winkler, T. and Tisdale, J. (2016), β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs. STEM CELLS. Шаблон:Doi
- ↑ Olivier, E., Marenah, L., McCahill, A., Condie, A., Cowan, S., & Mountford, J. C. (2016). High efficiency serum free feeder free erythroid differentiation of human pluripotent stem cells using small moleculesШаблон:Недоступная ссылка. Stem Cells Translational Medicine. Шаблон:Doi
- ↑ Figueiredo C, Goudeva L., Horn P. A., et al and Seltsam A. (2010) Generation of HLA-deficient platelets from hematopoietic progenitor cells. Transfusion.; 50(8): 1690—701. doi: 10.1111/j.1537-2995.2010.02644.x.
- ↑ Suzuki, D., Flahou, C., Yoshikawa, N., Stirblyte, I., Hayashi, Y., Sawaguchi, A., … & Matsumoto, T. (2020). «iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity». Stem cell reports, 14(1), 49-59. Шаблон:Doi Шаблон:PMC Шаблон:PMID
- ↑ Sou Nakamura, Naoya Takayama, Shinji Hirata, et al. & Koji Eto. (2014). Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from Human Induced Pluripotent Stem Cells. Cell Stem Cell; DOI: 10.1016/j.stem.2014.01.011
- ↑ Moreau, T., Evans, A. L., Vasquez, L., Tijssen, M. R., Yan, Y., Trotter, M. W., … & Dalby, A. (2016). Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming Шаблон:Wayback. Nature Communications, 7, Article number: 11208 Шаблон:Doi
- ↑ Thon JN, Medvetz DA, Karlsson SM, Italiano Jr JE. Road blocks in making platelets for transfusion Шаблон:Wayback. J Thromb Haemost 2015; 13 (Suppl. 1): S55-S62. Шаблон:DOI
- ↑ Nurhayati, R. W., Ojima, Y., & Taya, M. (2016). Recent developments in ex vivo platelet production. Cytotechnology, 1-11. Шаблон:DOI
- ↑ Riddell, S.R. & Greenberg, P.D. (1995) Principles for adoptive T cell therapy of human viral diseases. Annu. Rev. Immunol. 13, 545—586 DOI: 10.1146/annurev.iy.13.040195.002553
- ↑ Toshinobu Nishimura, Shin Kaneko, Ai Kawana-Tachikawa et al. & Hiromitsu Nakauchi (2013) Generation of rejuvenated antigen-specific T cells by pluripotency reprogramming and redifferentiation. Cell Stem Cell, 12(1), 114—126 DOI: 10.1016/j.stem.2012.11.002
- ↑ Raul Vizcardo, Kyoko Masuda, Daisuke Yamada, et al. & Hiroshi Kawamoto (2013) Regeneration of Human Tumor Antigen-Specific T Cells from iPSCs Derived from Mature CD8+ T Cells . Cell Stem Cell, 12(1), 31-36 DOI: Шаблон:Doi
- ↑ 456,0 456,1 456,2 Joseph G. Crompton, Mahendra Rao, Nicholas P. Restifo (2013) Memoirs of a Reincarnated T Cell. Cell Stem Cell, 12(1), 6-8 DOI: 10.1016/j.stem.2012.12.009
- ↑ Lei F, Haque R, Xiong X, Song J. (2012) Directed differentiation of induced pluripotent stem cells towards T lymphocytes. J Vis Exp. ;(63): e3986. doi: 10.3791/3986
- ↑ Sadelain, M., Brentjens, R. & Riviere, I. (2013). The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388—398 doi: 10.1158/2159-8290.CD-12-054
- ↑ Maria Themeli, Christopher C Kloss, Giovanni Ciriello, et al. & Michel Sadelain (2013) Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nature Biotechnology, doi:10.1038/nbt.2678
- ↑ Karsten A. Pilones, Joseph Aryankalayil, and Sandra Demaria (2012) Invariant NKT Cells as Novel Targets for Immunotherapy in Solid Tumors. Clinical and Developmental Immunology, 2012 , Article ID 720803, doi:10.1155/2012/720803
- ↑ Watarai H, Yamada D, Fujii S, Taniguchi M, Koseki H. (2012) Induced pluripotency as a potential path towards iNKT cell-mediated cancer immunotherapy. Int J Hematol. ;95(6):624-631. doi: 10.1007/s12185-012-1091-0
- ↑ Woan K.V., Kim H., Bjordahl R., et al. (2021). Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell, In Press, Шаблон:Doi
- ↑ M Haruta, Y Tomita, A Yuno, et al. and S Senju (2012) TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Therapy, doi:10.1038/gt.2012.59
- ↑ Fábio F. Rosa, Cristiana F. Pires, Ilia Kurochkin, et al., (2018). Direct reprogramming of fibroblasts into antigen-presenting dendritic cells Шаблон:Wayback. Science Immunology, 3(30), eaau4292 Шаблон:DOI
- ↑ Xie, H., Ye, M., Feng, R. & Graf, T (2004) Stepwise reprogramming of B cells into macrophages Шаблон:Wayback. Cell 117(5), 663—676 .doi: 10.1016/S0092-8674(04)00419-2
- ↑ Bussmann, L.H., Schubert, A., Vu Manh, T.P et al. and Graf, T. (2009). A robust and highly efficient immune cell reprogramming system. Cell Stem Cell, 5(5), 554—566. doi: 10.1016/j.stem.2009.10.004
- ↑ Bruno Di Stefano, Jose Luis Sardina, Chris van Oevelen, et al. & Thomas Graf. (2013) C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature,; DOI:10.1038/nature12885
- ↑ Rapino F., et al., & Graf T. (2013) C/EBPaInduces Highly Efficient Macrophage Transdifferentiation of B Lymphoma and Leukemia Cell Lines and Impairs Their Tumorigenicity, Cell Reports https://dx.doi.org/10.1016/j.celrep.2013.03.003
- ↑ Guo, J., Feng, Y., Barnes, P., Huang, F. F., Idell, S., Su, D. M., & Shams, H. (2012). Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PloS one, 7(4), e34681. Шаблон:Doi
- ↑ Sun, L., Guo, J., Brown, R., Amagai, T., Zhao, Y. and Su, D.-M. (2010), Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution Шаблон:Wayback. Aging Cell, 9: 347—357. Шаблон:Doi
- ↑ Nicholas Bredenkamp, Craig S. Nowell and C. Clare Blackburn (April 2014). Regeneration of the aged thymus by a single transcription factor Шаблон:Wayback. Development, 141, 1627—1637 Шаблон:Doi
- ↑ Bredenkamp N., Ulyanchenko S., O’Neill K. E., Manley N. R., Vaidya H. J. & Blackburn C. C. (2014). An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nature Cell Biology, Шаблон:Doi
- ↑ Oh, J., Wang, W., Thomas, R., & Su, D. M. (2020). Thymic rejuvenation via induced thymic epithelial cells (iTECs) from FOXN1-overexpressing fibroblasts to counteract inflammaging Шаблон:Wayback. bioRxiv. https://doi.org/10.1101/2020.03.17.995357 Шаблон:Wayback
- ↑ 474,0 474,1 Peng Y, Huang S, Cheng B, et al. and Fu X. (2012) Mesenchymal stem cells: A revolution in therapeutic strategies of age-related diseases Review Article. Ageing Research Reviews, , Available online 30 April 2012, .doi.org/10.1016/j.arr.2012.04.005
- ↑ Bieback K, Kern S, Kocaomer A et al. (2008) Comparing mesenchymal stromal cells from different human tissues: Bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng; 18:S71-S76
- ↑ Medet Jumabay, Raushan Abdmaulen, Albert Ly, et al. and Kristina I. Boström (January 2014). Pluripotent Stem Cells Derived From Mouse and Human White Mature Adipocytes. Stem Cells Trans Med. sctm.2013-0107 doi:10.5966/sctm.2013-0107
- ↑ Poloni A, Maurizi G, Leoni P, et al. & Cinti S (2012) Human Dedifferentiated Adipocytes Show Similar Properties to Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells. ;30(5):965-74. Шаблон:Doi.
- ↑ Sara M. Melief, Jaap Jan Zwaginga, Willem E. Fibbe and Helene Roelofs (2013) Adipose Tissue-Derived Multipotent Stromal Cells Have a Higher Immunomodulatory Capacity Than Their Bone Marrow-Derived Counterparts. Stem Cells Trans Med May 2013 sctm.2012-0184 doi:10.5966/sctm.2012-0184
- ↑ Shen JF, Sugawara A, Yamashita J, Ogura H, Sato S. (2011) Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues. Int J Oral Sci.;3(3):117-24
- ↑ Shah, M., George, R. L., Evancho-Chapman, M. M., & Zhang, G. (2016). Current Challenges in Dedifferentiated Fat Cells Research. Organogenesis, Шаблон:DOI
- ↑ Шаблон:Cite web
- ↑ Шаблон:Статья
- ↑ Stolzing A, Jones E, McGonagle D et al. (2008) Age-related changes in human bone marrow derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev;129:163-173
- ↑ Duscher, D., Rennert, R. C., Januszyk, M et al., & Gurtner, G. C. (2014). Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells Шаблон:Wayback. Scientific reports, 4. Article number: 7144 Шаблон:Doi
- ↑ Bloor, A.J.C., Patel, A., Griffin, J.E. et al. (2020). Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: a phase I, multicenter, open-label, dose-escalation study. Nat Med. https://doi.org/10.1038/s41591-020-1050-x
- ↑ Luzzani, C., Neiman, G., Garate, X., Questa, M., Solari, C., Espinosa, D. F., … & Miriuka, S. G. (2015). A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement Шаблон:Wayback. Stem Cell Research & Therapy, 6(1), 1-13. Шаблон:DOI
- ↑ Joana Frobe, Hatim Hemeda, Michael Lenz, et al., & Wolfgang Wagneremai (Sept. 2014). Epigenetic Rejuvenation of Mesenchymal Stromal Cells Derived from Induced Pluripotent Stem Cells. Stem Cell Reports, 3(3), 414—422, doi: https://dx.doi.org/10.1016/j.stemcr.2014.07.003
- ↑ Irina Eberle, Mohsen Moslem, Reinhard Henschler, Tobias Cantz (2012) Engineered MSCs from Patient-Specific iPS Cells Шаблон:Wayback. Advances in Biochemical Engineering Biotechnology
- ↑ Diederichs Solvig and TuanRocky S. (April, 2014). Functional Comparison of Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Cells and Bone Marrow-Derived Mesenchymal Stromal Cells from the Same Donor Stem Cells and Development. Шаблон:Doi Шаблон:PMID Шаблон:PMC
- ↑ Rogers, R. E., Haskell, A., White, B. P., Dalal, S., Lopez, M., Tahan, D., … & Kaunas, R. A scalable system for generation of mesenchymal stem cells derived from induced pluripotent cells employing bioreactors and degradable microcarriers. Stem cells translational medicine. Шаблон:PMID Шаблон:DOI
- ↑ Soontararak, S., Chow, L., Johnson, V., Coy, J., Wheat, W., Regan, D., & Dow, S. (2018). Mesenchymal Stem Cells (MSC) Derived from Induced Pluripotent Stem Cells (iPSC) Equivalent to Adipose‐Derived MSC in Promoting Intestinal Healing and Microbiome Normalization in Mouse Inflammatory Bowel Disease Model. Stem cells translational medicine. https://doi.org/10.1002/sctm.17-0305
- ↑ Chen Y S, Pelekanos R A., Ellis R L., et al and Nicholas M. Fisk (2012) Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells Stem Cells Trans Med published online February 7, 2012 Шаблон:Doi
- ↑ Millard, S. M. and Fisk, N. M. (2012), Mesenchymal stem cells for systemic therapy: Shotgun approach or magic bullets?. Bioessays. Шаблон:Doi.
- ↑ Hynes, K., Menicanin, D., Han, J., et al. & Bartold, P. M. (2013). Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. Journal of dental research, 92(9), 833—839.Шаблон:Doi
- ↑ Шаблон:Cite web
- ↑ Zou, L., Luo, Y., Chen, M., Wang, G., Ding, M., Petersen, C. C., … & Bünger, C. (2013).A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds Шаблон:Wayback. Scientific reports, 3. Шаблон:Doi
- ↑ 497,0 497,1 Kondo, T. (2021). Selective eradication of pluripotent stem cells by inhibiting DHODH activity. Stem cells, 39(1), 33-42. Шаблон:PMID Шаблон:DOI
- ↑ 498,0 498,1 Al-Akashi, Z., Zujur, D., Kamiya, D., Kato Jr, T., Kondo, T., & Ikeya, M. (2023). Selective vulnerability of human-induced pluripotent stem cells to dihydroorotate dehydrogenase inhibition during mesenchymal stem/stromal cell purification. Frontiers in Cell and Developmental Biology, 11. 11, 1089945 Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ 499,0 499,1 Pellegrini, S., Zamarian, V., & Sordi, V. (2022). Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes. Transplant International, 169. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Zhang, L., Wang, H., Liu, C., Wu, Q., Su, P., Wu, D., … & Zhou, J. (2018). MSX2 Initiates and Accelerates Mesenchymal Stem/Stromal Cell Specification of hPSCs by Regulating TWIST1 and PRAME. Stem Cell Reports. DOI: https://doi.org/10.1016/j.stemcr.2018.06.019
- ↑ Pei-Lun Lai, Hsuan Lin, Shang-Fu Chen, et al., & Jean Lu (2017). Efficient Generation of Chemically Induced Mesenchymal Stem Cells from Human Dermal Fibroblasts Шаблон:Wayback. Scientific Reports 7, Article number: 44534 Шаблон:Doi
- ↑ Ruenn Chai Lai, Ronne Wee Yeh Yeo, Soon Sim Tan, Bin Zhang, et al. and Sai Kiang Lim (2013) Mesenchymal Stem Cell Exosomes: The Future MSC-Based Therapy? In: Mesenchymal Stem Cell Therapy. Chase, Lucas G.; Vemuri, Mohan C. (Eds.). 39-61 DOI 10.1007/978-1-62703-200-1_3
- ↑ Ruenn Chai Lai, Ronne Wee Yeh Yeo, Kok Hian Tan, Sai Kiang Lim (2013) Exosomes for drug delivery — a novel application for the mesenchymal stem cell. Biotechnology Advances.Шаблон:Doi
- ↑ Ronne Wee Yeh Yeoa, b, 1, Ruenn Chai Laia, 1, Bin Zhanga, et al. & Sai Kiang Lim (2012)Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Advanced Drug Delivery ReviewsШаблон:Doi
- ↑ Nobuyoshi Kosaka, Fumitaka Takeshita, Yusuke Yoshioka, et al. & Takahiro Ochiya (2012) Exosomal tumor-suppressive microRNAs as novel cancer therapy: «Exocure» is another choice for cancer treatment. Advanced Drug Delivery ReviewsШаблон:Doi
- ↑ Mangeot, Philippe Lotteau, Vincent Peschanski, Marc Girard, Mathilde (Evry Cedex, FR) (2013) REPROGRAMMATION OF EUKARYOTIC CELLS WITH ENGINEERED MICROVESICLES Шаблон:Wayback United States Patent Application 20130034900
- ↑ Dominici, M. L. B. K., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., … & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315—317. Шаблон:PMID Шаблон:DOI
- ↑ 508,0 508,1 Myret Ghabriel, Ahmed El Hosseiny, Ahmed Moustafa, Asma Amleh (2021). Comparative Transcriptomics Identifies Potential Stemness-Related Markers for Mesenchymal Stromal/Stem Cells Шаблон:Wayback. bioRxiv 2021.05.25.445659; doi: Шаблон:Doi
- ↑ Kaya, H. E. K., & Radhakrishnan, S. K. (2020). Trash Talk: Mammalian Proteasome Regulation at the Transcriptional Level. Trends in Genetics. 37(2), 160—173 Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Cheng, A., Hardingham, T. E., & Kimber, S. J. (2013). Generating Cartilage Repair from Pluripotent Stem Cells. Tissue Engineering Part B: Reviews. doi:10.1089/ten.teb.2012.0757
- ↑ Tsumaki, N. (2015). Cartilage Regeneration Using Induced Pluripotent Stem Cell Technologies Шаблон:Wayback. In A Tissue Regeneration Approach to Bone and Cartilage Repair (pp. 85-98). Springer International Publishing. Шаблон:DOI
- ↑ Outani H, Okada M, Yamashita A, Nakagawa K, Yoshikawa H, et al. (2013) Direct Induction of Chondrogenic Cells from Human Dermal Fibroblast Culture by Defined Factors. PLoS ONE 8(10): e77365. doi:10.1371/journal.pone.0077365
- ↑ K. Miyoshi, D. Tsuji, K. Kudoh, et al.& Takafumi Noma (2010) Generation of human induced pluripotent stem cells from oral mucosa J Biosci Bioeng, 110(3), 345—350 Шаблон:Doi
- ↑ Katsuhiro Yoshikawa, Motoko Naitoh, Hiroshi Kubota, et al. (2013) Multipotent stem cells are effectively collected from adult human cheek skin. Biochemical and Biophysical Research Communications, 431(1), 104—110 Шаблон:Doi
- ↑ Hong-Kee Tana, Cheng-Xu Delon Toha, Dongrui Mab, et al. and Yuin-Han Loh (2014). Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking. Stem Cells Trans Med. Шаблон:Doi
- ↑ 516,0 516,1 Okita, K., Yamakawa T., Matsumura, Y., et al. and Shinya Yamanaka (2012) An Efficient Non-viral Method to Generate Integration-Free Human iPS Cells from Cord Blood and Peripheral Blood Cells. STEM CELLS DOI: 10.1002/stem.1293
- ↑ Imbisaat Geti, Mark L. Ormiston, Foad Rouhani, et al & Nicholas W. Morrell (2012) A Practical and Efficient Cellular Substrate for the Generation of Induced Pluripotent Stem Cells from Adults: Blood-Derived Endothelial Progenitor Cells. Stem Cells Trans Med. sctm.2012-0093 doi:10.5966/sctm.2012-0093
- ↑ Judith Staerk, Meelad M. Dawlaty, Qing Gaoet al. and Rudolf Jaenisch (2010) Reprogramming of Human Peripheral Blood Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 7(1), 20-24 doi:10.1016/j.stem.2010.06.002
- ↑ Park TS, Huo JS, Peters A, Talbot CC Jr, Verma K, et al. (2012) Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors. PLoS ONE 7(8): e42838. doi:10.1371/journal.pone.0042838
- ↑ Zhou T, Benda C, Duzinger S, Et al & Esteban MA(2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22: 1221—1228
- ↑ Ting Zhou, Christina Benda, Sarah Dunzinger, et al. & Miguel A Esteban (2012) Generation of human induced pluripotent stem cells from urine samples. Nature Protocols. 7(12), 2080—2089 Шаблон:Doi
- ↑ Lihui Wang, Linli Wang, Wenhao Huang, & Duanqing Pei (2012) Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods, doi:10.1038/nmeth.2283
- ↑ . Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K et al (2013) Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells Шаблон:Wayback. .Cell Regeneration , 2:6 doi:10.1186/2045-9769-2-6
- ↑ Sun, W., Hu, X., Wang, L., Ma, Y., Zhang, X., Zhang, R., … & Wang, G. (2022). Generation of iPSC line from Urine Cells of hemophilia A with F8 (p. R814X) mutation Шаблон:Wayback. Stem Cell Research, 102682. Шаблон:Doi
- ↑ Shantaram Bharadwaj, Guihua Liu, Yingai Shi, et al. & Yuanyuan Zhang (2013) Multi-Potential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology. STEM CELLS,31(9), 1840—1856 Шаблон:DOI
- ↑ Huang, Y. Z., He, T., Cui, J., Jiang, Y. L., Zeng, J. F., Zhang, W. Q., & Xie, H. Q. (2022). Urine-Derived Stem Cells for Regenerative Medicine: Basic Biology, Applications, and Challenges. Tissue Engineering Part B: Reviews. Шаблон:PMID Шаблон:DOI
- ↑ Culenova, M., Nicodemou, A., Novakova, Z. V., Debreova, M., Smolinská, V., Bernatova, S., … & Danisovic, L. (2021). Isolation, Culture and Comprehensive Characterization of Biological Properties of Human Urine-Derived Stem Cells. International Journal of Molecular Sciences, 22(22), 12503. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Yimei Wang1, Jinyu Liu1, Xiaohua Tan1, et al. and Yulin Li (2012) Induced Pluripotent Stem Cells from Human Hair Follicle Mesenchymal Stem Cells. Stem Cell Reviews and Reports,.doi:10.1007/s12015-012-9420-5
- ↑ Raab, S., Klingenstein, M., Liebau, S., & Linta, L. (2014). A comparative view on human somatic cell sources for iPSC generation. Stem Cells International, 2014(2014), Article ID 768391, https://dx.doi.org/10.1155/2014/768391
- ↑ Schnabel L. V, Abratte C. M., Schimenti J. C, et al. and Fortier L. A. (2012) Genetic background affects induced pluripotent stem cell generation. Stem Cell Research & Therapy 2012, 3:30 doi:10.1186/scrt121
- ↑ Panopoulos AD, Ruiz S, Yi F, Herrerías A, Batchelder EM, Izpisua Belmonte JC.(2011) Rapid and highly efficient generation of induced pluripotent stem cells from human umbilical vein endothelial cells. PLoS One;6:e19743
- ↑ 532,0 532,1 532,2 J.M. Polo, S. Liu, M.E. Figueroa, et al. & Konrad Hochedlinger (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol, 28, 848—855 doi:10.1038/nbt.1667
- ↑ Miura K, Okada Y, Aoi T, Okada A, et al & Yamanaka S.(2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol.;27:743-745
- ↑ 534,0 534,1 K. Kim, A. Doi, B. Wen, K. Ng, R. Zhao, P. Cahan, J. Kim, M.J. Aryee, H. Ji, L.I. Ehrlich et al. (2010) Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285—290 doi:10.1038/nature09342
- ↑ 535,0 535,1 K. Kim, R. Zhao, A. Doi, K. Ng, J. Unternaehrer, P. Cahan, H. Huo, Y.H. Loh, M.J. Aryee, M.W. Lensch et al. (2011) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol, 29, pp. 1117—1119
- ↑ 536,0 536,1 O. Bar-Nur, H.A. Russ, S. Efrat, N. Benvenisty (2011) Epigenetic memory and preferential lineage-specific differentiation Шаблон:Wayback in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9 , 17-23 Шаблон:Doi
- ↑ 537,0 537,1 Denker H-W.(2012) Time to Reconsider Stem Cell Induction Strategies. Cells.; 1(4):1293-1312. doi:10.3390/cells1041293
- ↑ Jong-Hee Lee, Jung Bok Lee, Zoya Shapovalova, Aline Fiebig-Comyn, Ryan R. Mitchell, Sarah Laronde, Eva Szabo, Yannick D. Benoit & Mickie Bhatia (2014).Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states Шаблон:Wayback Nature Communications 5, Article number: 5605 doi:10.1038/ncomms6605
- ↑ Васькова, Е. А., Стекленева, А. Е., Медведев, С. П., & Закиян, С. М. (2013). Феномен «эпигенетической памяти» индуцированных плюрипотентных стволовых клеток Шаблон:Wayback. Acta Naturae (русскоязычная версия), 5(4 (19)).
- ↑ Aija Kyttälä, Roksana Moraghebi, Cristina Valensisi, Johannes Kettunen, Colin Andrus, Kalyan Kumar Pasumarthy, Mahito Nakanishi, Ken Nishimura, Manami Ohtaka, Jere Weltner, Ben Van Handel, Olavi Parkkonen, Juha Sinisalo, Anu Jalanko, R. David Hawkins, Niels-Bjarne Woods, Timo Otonkoski, Ras Trokovic (2016). Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports, Шаблон:DOI
- ↑ Р. Фрешни (2010) Культура животных клеток. Издательство: Бином. Лаборатория знаний. ISBN 978-5-94774-596-2
- ↑ Zhang Y, Wei C, Zhang P, Li X, Liu T, et al. (2014). Efficient Reprogramming of Naïve-Like Induced Pluripotent Stem Cells from Porcine Adipose-Derived Stem Cells with a Feeder-Independent and Serum-Free System Шаблон:Wayback. PLoS ONE 9(1): e85089. doi:10.1371/journal.pone.0085089
- ↑ 543,0 543,1 Masato Nakagawa, Yukimasa Taniguchi, Sho Senda, et al. & Shinya Yamanaka (2014). A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells Шаблон:Wayback. Scientific Reports, 4, Article number: 3594 doi:10.1038/srep03594
- ↑ Chen, K. G., Mallon, B. S., McKay, R. D., & Robey, P. G. (2014). Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell stem cell, 14(1), 13-26.
- ↑ Dolley-Sonneville PJ, Romeo LE, Melkoumian ZK (2013) Synthetic Surface for Expansion of Human Mesenchymal Stem Cells in Xeno-Free, Chemically Defined Culture Conditions. PLoS ONE 8(8): e70263. doi:10.1371/journal.pone.0070263
- ↑ Aumailley M et al. (2005). A simplified laminin nomenclature. Matrix Biol. 24 (5): 326-32.doi:10.1016/j.matbio.2005.05.006.
- ↑ Bergstrom, R., Strom, S., Holm, F., Feki, A. & Hovatta, O. (2011). Xeno-free culture of human pluripotent stem cells. Methods Mol Biol 767, 125—136
- ↑ Sergey Rodin, Liselotte Antonsson, Colin Niaudet et al. & Karl Tryggvason (January 2014)Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment Шаблон:Wayback. Nature Communications 5, Article number: 3195 doi:10.1038/ncomms4195
- ↑ Eric W. Brunner, Izabela Jurewicz, Elena Heister, et al. and Alan B. Dalton (2014). Growth and Proliferation of Human Embryonic Stem Cells on Fully Synthetic Scaffolds Based on Carbon Nanotubes. ACS Applied Materials & Interfaces,; 140123104241006 DOI:10.1021/am405097w
- ↑ Dixon, J. E., Shah, D. A., Rogers, et al. & Shakesheff, K. M. (2014). Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proceedings of the National Academy of Sciences, Шаблон:Doi
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Chen, Y., Tristan, C. A., Chen, L., Jovanovic, V. M., Malley, C., Chu, P. H., … & Singeç, I. (2021). A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nature Methods, 18(5), 528—541. Шаблон:PMID Шаблон:DOI
- ↑ Kejin Hu.(March, 2014). Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells and Development. Шаблон:Doi
- ↑ Emilie Bayart and Odile Cohen-Haguenaue (2013)Technological Overview of iPS Induction from Human Adult Somatic Cells Current Gene Therapy,13(2),73-92
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite doi
- ↑ EMD Millipore Application Note Шаблон:Wayback Min Lu, Cristina Moore, Vi Chu (2011) Enhanced Reprogramming of Human Somatic Cells using Human STEMCCA Polycistronic Lentivirus and Human iPS Cell Boost Supplement
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite doi
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Hudry, E., Martin, C., Gandhi, S., György, B., Scheffer, D. I., Mu, D., … & Masek, M. (2016). Exosome-associated AAV vector as a robust and convenient neuroscience tool Шаблон:Wayback. Gene therapy, 23(4), 380—392. Шаблон:Doi
- ↑ György, B., Sage, C., Indzhykulian, A. A., Scheffer, D. I., Brisson, A. R., Tan, S., … & Li, Y. (2017). Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV. Molecular Therapy. 25(2), 379—391 Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Luni, C., Giulitti, S., Serena, E., Ferrari, L., Zambon, A., Gagliano, O., … & Elvassore, N. (2016). High-efficiency cellular reprogramming with microfluidics Шаблон:Wayback. Nature methods, 13(5), 446—452. Шаблон:Doi
- ↑ Raimes, W., Rubi, M., Super, A., Marques, M. P., Veraitch, F., & Szita, N. (2016). Transfection in perfused microfluidic cell culture devices: A case study. Process Biochemistry.Шаблон:Doi
- ↑ McKinlay, C. J., Vargas, J. R., Blake, T. R., Hardy, J. W., Kanada, M., Contag, C. H., … & Waymouth, R. M. (2017). Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals Шаблон:Wayback. Proceedings of the National Academy of Sciences, 114(4), E448-E456, Шаблон:Doi
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Публикация
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite doi
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Kim, Y., Jeong, J. & Choi, D. (2020). Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med. https://doi.org/10.1038/s12276-020-0383-3
- ↑ Шаблон:Cite doi
- ↑ Шаблон:Cite pmid
- ↑ Xiang Li et al., Zhen Chai, Hongkui Deng (2017). Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State. Cell Stem Cell Шаблон:Doi
- ↑ Guan, J., Wang, G., Wang, J., Zhang, Z., Fu, Y., Cheng, L., … & Deng, H. (2022). Chemical reprogramming of human somatic cells to pluripotent stem cells Шаблон:Wayback. Nature, 1-7. Шаблон:PMID Шаблон:DOI
- ↑ Gan, T., Fan, L., Zhao, L., Misra, M., Liu, M., Zhang, M., & Su, Y. (2021). JNK Signaling in Drosophila aging and longevity. International Journal of Molecular Sciences, 22(17), 9649. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite pmid
- ↑ Seung-Ju Cho, So-Yeon Kim, Soon-Jung Park, Naree Song, Haw-Young Kwon, Nam-Young Kang, Sung-Hwan Moon, Young-Tae Chang, and Hyuk-Jin Cha (2016). Photodynamic Approach for Teratoma-Free Pluripotent Stem Cell Therapy Using CDy1 and Visible Light Шаблон:Wayback. ACS Cent. Sci., Article ASAP Шаблон:DOI
- ↑ Шаблон:Cite web
- ↑ Mao, D., Ando, S., Sato, S.-i., et al. (2017). A Synthetic Hybrid Molecule for the Selective Removal of Human Pluripotent Stem Cells from Cell Mixtures Шаблон:Wayback, Angewandte Chemie International Edition Шаблон:DOI
- ↑ Kuang, Y., Miki, K., Parr, C. J., Hayashi, K., Takei, I., Li, J., … & Saito, H. (2017). Efficient, Selective Removal of Human Pluripotent Stem Cells via Ecto-Alkaline Phosphatase-Mediated Aggregation of Synthetic Peptides. Cell Chemical Biology. Шаблон:Doi
- ↑ Tanosaki, S., Tohyama, S., Fujita, J., Someya, S., Hishiki, T., Matsuura, T., ... & Fukuda, K. (2020). Fatty acid synthesis is indispensable for survival of human pluripotent stem cells. Iscience, 23(9), 101535. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Nakashima, Y., Miyagi-Shiohira, C., Noguchi, H., & Omasa, T. (2018). Atorvastatin inhibits the HIF1α-PPAR axis, which is essential for maintaining the function of human induced pluripotent stem cells. Molecular Therapy, 26(7), 1715-1734. Шаблон:PMID Шаблон:PMC Шаблон:DOI
- ↑ Burkert, K., Taheri, H., Hamad, S. et al. (2021). Salicylic diamines selectively eliminate residual undifferentiated cells from pluripotent stem cell-derived cardiomyocyte preparations. Sci Rep 11, 2391 Шаблон:PMC Шаблон:DOI
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
- ↑ Шаблон:Cite pmid
Шаблон:Выбор языка Шаблон:Биоинженерия
- Страницы с ошибками в примечаниях
- Русская Википедия
- Страницы с неработающими файловыми ссылками
- Стволовые клетки
- Эпигенетическое наследование
- Генетическая инженерия
- Биомедицина
- Клеточная биология
- Биотехнология
- Трансплантология
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Русской Википедии