Русская Википедия:Институт ядерных проблем БГУ
Шаблон:Карточка института Институт ядерных проблем Белорусского государственного университета (НИИ ЯП БГУ) — исследовательское учреждение Белоруссии.
Создание
Научно-исследовательское учреждение «Институт ядерных проблем» Белорусского государственного университета (НИИ ЯП БГУ) было создано 1 сентября 1986 года на основании постановления Правительства СССР. Институту передано здание постройки начала 1930-х годов (архитекторы И. Запорожец и Г. Лавров), в котором раньше располагался химический факультетШаблон:Sfn. В 1942 году здание занимала немецкая больницаШаблон:Sfn, занятия в корпусе начались только в 1949-1950 учебном годуШаблон:Sfn. С 1969 года в здании размещался юридический факультет БГУШаблон:Sfn, затем руководство Минского МетрострояШаблон:Sfn.
Первый директор и основатель института, ныне почётный директор — Владимир Григорьевич Барышевский[1], профессор, заслуженный деятель науки Республики Беларусь, лауреат Государственной премии Республики Беларусь в области науки и техники, кавалер Орденов Франциска Скорины и «Знак Почёта», автор двух открытий СССР в области ядерной физики (№ 224 от 1979 г. и № 360 от 1981 г.).
1 января 2013 года директором института назначен доктор физико-математических наук Сергей Афанасьевич Максименко[2].
Основные научные направления
- исследования в области ядерной физики, физики элементарных частиц, космомикрофизики и ядерной астрофизики;
- исследования экстремального состояния вещества при сверхвысоких температурах и давлениях и магнитной кумуляции энергии;
- новые композиционные материалы, нано- и микроструктурированные материалы;
- радиационные и ядерно-физические технологии с использованием радиоактивных источников, ускорителей и ядерных реакторов; новые методы измерений ионизирующих излучений.
Важнейшие достижения
- Теоретическое предсказание и первое в мире экспериментальное наблюдение нового типа излучения — параметрического рентгеновского излучения (ПРИ), возникающего при равномерном движении заряженных частиц через кристаллы[3][4].
- Обнаружение ПРИ, возбуждаемого протонами больших энергий в кристалле, на ускорителе ИФВЭ (Протвино, Россия), а также обнаружение многоволнового режима генерации ПРИ от электронов на ускорителе СИРИУС (Томский политехнический университет)[5].
- Идея и обоснование существования рентгеновского излучения, возбуждаемого при каналировании релятивистских заряженных частиц (электронов, позитронов) в кристаллах. Экспериментально наблюдалось во многих физических центрах мира[3][4].
- Теоретическое предсказание и экспериментальное обнаружение (совместно с Институтом физики НАН Беларуси) явления осцилляций плоскости распада 3-γ аннигиляции ортопозитрония в магнитном поле[3].
- Теоретическое и экспериментальное обнаружение неизвестной ранее характеристики атома водорода (мюония) — квадрупольного момента у основного состояния[3].
- Идея и обоснование существования явления осцилляций и спинового дихроизма и, как следствие, существование тензорной поляризации у дейтонов (и других частиц) большой энергии, движущихся в неполяризованных веществах; спиновый дихроизм экспериментально обнаружен в совместных экспериментах в Германии (COSY) и России (ОИЯИ)[3].
- Теоретическое предсказание явления вращения спина частиц высоких энергий в изогнутых кристаллах. Экспериментально обнаружено в Лаборатории им. Ферми (США)[3].
- Предсказан эффект магнитотормозного образования электрон-позитронных пар в кристаллах, наблюдавшийся в ЦЕРН[3][6].
- Предсказано существование дихроизма и двулучепреломления кристаллов в ТэВной области энергии фотонов[3][6].
- Предсказан эффект радиационного охлаждения электронов высоких энергий в кристаллах, обнаруженный в ЦЕРН (Швейцария)[6][7].
- Создание нового класса генераторов электромагнитного излучения — объемных лазеров на свободных электронах[3][4].
- Существование предсказанного в НИИ ЯП БГУ эффекта многократного объемного отражения частиц высоких энергий изогнутыми плоскостями одного кристалла экспериментально подтверждено на ускорителе ЦЕРН (Швейцария)[8].
- Теоретическое обоснование существования неинвариантных относительно изменения знака времени явлений вращения плоскости поляризации света и двойного лучепреломления в веществе, помещенном в электрическое поле, а также CP-неинвариантный (Т-неинвариантный) эффект появления у атомов и ядер индуцированного электрического момента в магнитном поле (и появление индуцированного магнитного момента в электрическом поле)[3][4].
- Создание в Белоруссии магнитокумулятивных генераторов мощных токов и высоких напряжений на основе использования энергии взрыва, открывших дорогу для развития в стране этого важнейшего научного и технологического направления[3].
- Получение новых ограничений на существование и протяженность дополнительных измерений пространства на основании исследований поглощения первичными черными дырами релятивистской плазмы, заполнявшей Вселенную на ранних этапах её эволюции[9].
- Построение теории рассеяния электромагнитного излучения на углеродной нанотрубке (УНТ) конечной длины, впервые позволившей дать качественную и количественную интерпретацию экспериментально наблюдаемого в УНТ-содержащих композитах пика поглощения в терагерцовой частотной области[10]. Экспериментальное доказательство существования локализованного плазмонного резонанса в композиционных материалах с одностенными УНТ[11]. Эффект имеет прикладное значение для создания новых электромагнитных защитных материалов и новых медицинских технологий.
- Создание нового сверхтяжелого сцинтилляционного материала вольфрамата свинца PbWO4 (PWO), который был принят как материал для создания электромагнитных калориметров детекторов CMS и ALICE в ЦЕРН (Швейцария) и PANDA (GSI, Германия)[12]. Использование этого калориметра коллаборацией CMS, в которую входит НИИ ЯП БГУ[13], позволило открыть бозон Хиггса[14].
- Развитие СВЧ-энергетики — разработка различных технологий применения СВЧ-излучения в промышленности, сельском хозяйстве и экологии.
Научные школы
В НИИ ЯП БГУ действует научная школа в области ядерной физики и физики элементарных частиц: Ядерная оптика поляризованных сред. Основатель и руководитель — профессор В. Г. Барышевский[1].
Интенсивно развивается научная школа в области Наноэлектромагнетизма — нового научного направления, исследующего эффекты взаимодействия электромагнитного и других типов излучений с наноразмерными объектами и наноструктурированными системами (основатели — д.ф.-м.н.[2] С. А. Максименко и д.ф.-м.н. Г. Я. Слепян)[15].
Структура
Организационно НИИ ЯП БГУ состоит из 10 лабораторий[16]:
- аналитических исследований
- физико-техническая лаборатория
- физики высоких плотностей энергии
- теоретической физики и моделирования ядерных процессов
- экспериментальной физики высоких энергий
- наноэлектромагнетизма
- отраслевая лаборатория радиационной безопасности
- физики перспективных материалов
- фундаментальных взаимодействий
- электронных методов и средств эксперимента
Директор
Директор НИИ ЯП БГУ Сергей Афанасьевич Максименко защитил в 1996 году диссертацию на соискание учёной степени доктора физико-математических наук по теме «Распределение волн и волновых пакетов в периодических и диспергирующих средах»[17].
См. также
Примечания
Литература
Ссылки
- ↑ 1,0 1,1 Барышевский Владимир Григорьевич Шаблон:Wayback Официальный сайт Института Ядерных Проблем БГУШаблон:Ref-en
- ↑ 2,0 2,1 Максименко Сергей Афанасьевич Шаблон:Wayback Официальный сайт ИЯП БГУШаблон:Ref-en
- ↑ 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 Шаблон:Книга
- ↑ 4,0 4,1 4,2 4,3 Шаблон:Книга
- ↑ Шаблон:Статья
- ↑ 6,0 6,1 6,2 Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, G. Ya. Slepyan, S. A. Maksimenko, V. K. Ksenevich, P. Buka, D. Seliuta, I. Kasalynas, J. Macutkevic, G. Valusis, C. Thomsen, A. Lakhtakia, Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Phys. Rev. B 85, 165435 (2012).
- ↑ Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Статья
- ↑ S.A. Maksimenko and G.Ya. Slepyan, Nanoelectromagnetics of low-dimensional structures, in «The Handbook of Nanotechnology: Nanometer Structure Theory, Modeling, and Simulation», Ed. by: A.Lakhtakia, SPIE Press. — 2004. — Pp. 145—206.
- ↑ Шаблон:Cite web
- ↑ Летапіс друку Беларусі. — 1996. — № 12 (снежань). — Мінск, Нацыянальная кніжная палата Беларусі. — С. 30.