Русская Википедия:Кольца Борромео
Шаблон:Абстрактный узел Кольца Борромео[1] — зацепление, состоящее из трёх топологических окружностей, которые сцеплены и образуют брунново зацепление (то есть удаление любого кольца приведёт к разъединению двух оставшихся колец). Другими словами, никакие два из трёх колец не сцеплены, как в зацеплении Хопфа, тем не менее, все вместе они сцеплены.
Математические свойства
Несмотря на кажущуюся из иллюстраций естественность колец Борромео, из геометрически идеальных окружностей такое зацепление сделать невозможноШаблон:Sfn. Также это можно увидеть, рассмотрев диаграмму узла: если предположить, что окружности 1 и 2 касаются в двух точках пересечения, то они лежат либо в одной плоскости, либо на сфере. В обоих случаях третья окружность должна пересекать эту плоскость или сферу в четырёх точках и не лежать на ней, что невозможноШаблон:Sfn.
В то же время подобное зацепление можно осуществить с помощью эллипсов, причём Эксцентриситет этих эллипсов можно сделать сколь угодно малым. По этой причине тонкие кольца, сделанные из гибкой проволоки, можно использовать как кольца Борромео.
Зацепление
Шаблон:Details В теории узлов кольца Борромео являются простейшим примером бруннова зацепления — хотя любая пара колец не сцеплена, их нельзя расцепить.
Простейший способ это доказать — рассмотреть фундаментальную группу дополнения двух несцеплённых окружностей; по теореме Зейферта — ван Кампена это свободная группа с двумя образующими, a и b, а тогда третьему циклу соответствует класс коммутатора, [a, b] = aba−1b−1, что можно видеть из диаграммы зацепления. Этот коммутатор нетривиален в фундаментальной группе, а потому кольца Борромео сцеплены.
В Шаблон:Не переведено 5 существует аналогия между узлами и простыми числами, позволяющая прослеживать связи простых чисел. Тройка простых чисел (13, 61, 937) является связанной по модулю 2 (её Шаблон:Не переведено 5 равен −1), но попарно по модулю 2 эти числа не связаны (все символы Лежандра равны 1). Такие простые называются «правильными тройками Борромео по модулю 2»[2] или «простыми Борромео по модулю 2».[3]
Гиперболическая геометрия
Кольца Борромео являются примером Шаблон:Не переведено 5 — дополнение колец Борромео в 3-сфере допускает полную Шаблон:Не переведено 5 метрику с конечным объёмом. Каноническое разложение (Эпштейна — Пеннера) дополнения состоит из двух правильных октаэдров. Гиперболический объём равен 16Л(π/4) = 7.32772…, где Л — Шаблон:Не переведено 5.[4]
Связь с косами
Если рассечь кольца Борромео, получим одну итерацию обычного плетения косы. Обратно, если связать концы (одной итерации) обычной косы, получим кольца Борромео. Удаление одного кольца освобождает оставшихся два, и удаление одной ленты из косы освобождает две другие — они являются простейшими брунновым зацеплением и Шаблон:Не переведено 5 соответственно.
В стандартной диаграмме зацепления кольца Борромео упорядочены в циклическом порядке. Если использовать цвета, как выше, красное будет лежать над зелёным, зелёное над синим, синее над красным, и при удалении одного из колец одно из оставшихся будет лежать над другим и они окажутся незацеплёнными. Так же и с косой: каждая лента лежит над второй и под третьей.
История
Название «кольца Борромео» появилось из-за их использования на гербе аристократической семьи Борромео в северной Италии. Зацепление много старше и появлялось в виде Шаблон:Не переведено 5 на картинных камнях викингов, которые датируются седьмым веком.
Кольца Борромео использовались в различных контекстах, таких как религия и искусство, для того чтобы показать силу единства. В частности кольца использовались как символ Троицы. Известно, что психоаналитик Жак Лакан нашёл вдохновение в кольцах Борромео как модели топологии человеческой личности, в которой каждое кольцо представляет фундаментальный компонент реальности («действительное», «воображаемое» и «символическое»).
В 2006 году Международный математический союз принял решение использовать логотип, основанный на кольцах Борромео, для XXV международного конгресса математиков в Мадриде, Испания[5].
Каменный столб в Шаблон:Не переведено 5 в Ченнаи, Тамилнад, Индия, датируемый шестым веком, содержит такую фигуруШаблон:Sfn[6].
Частичные кольца
Известно много визуальных знаков, относящихся к средним векам и временам ренессанса, состоящих из трёх элементов, сцеплённых друг с другом тем же способом, что и кольца Борромео (в их общепринятом двумерном представлении), но индивидуальные элементы при этом не представляют замкнутых колец. Примерами таких символов служат рога на Шаблон:Не переведено 5 и полумесяцы Дианы де Пуатье. Примером знака с тремя различными элементами служит эмблема клуба Интернасьонал. Хоть и в меньшей степени, к этим символам относятся Шаблон:Не переведено 5 и диаграмма Венна из трёх элементов.
Также узел «обезьяний кулак», по существу, является трёхмерным представлением колец Борромео, хотя узел состоит из трёх уровней.
Большее количество колец
Некоторые соединения в теории узлов содержат множественные конфигурации колец Борромео. Одно соединение такого типа, состоящее из пяти колец, используется в качестве символа в дискордианизме, основанное на изображении из книги «Принципия Дискордия».
Реализации
Молекулярные кольца Борромео — молекулярные аналоги колец Борромео, которые являются Шаблон:Не переведено 5. В 1997 году биолог Мао Чэндэ (Chengde Mao) с соавторами из Нью-Йоркского университета успешно сконструировали кольца из ДНКШаблон:Sfn. В 2003 году химик Фрейзер Стоддарт с соавторами из Калифорнийского университета, использовали комплексные соединения для построения набора колец из 18 компонентов за одну операцию[7].
Квантово-механический аналог колец Борромео называется ореолом или состоянием Ефимова (существование таких состояний было предсказано физиком Виталием Николаевичем Ефимовым в 1970 году). В 2006 году исследовательская группа Рудольфа Грима и Ганса-Кристофа Нэгерля из Института экспериментальной физики Инсбрукского университета (Австрия) экспериментально подтвердила существование таких состояний в ультрахолодном газе атомов цезия и опубликовала открытие в научном журнале NatureШаблон:Sfn. Группа физиков под руководством Рандалла Хулета (Randall Hulet) в университете Райса в Хьюстоне получили тот же самый результат с помощью трёх связанных атомов лития и опубликовали своё открытие в журнале Science ExpressШаблон:Sfn. В 2010 году группа под управлением К. Танака получила состояние Ефимова с нейтронами (нейтронный ореол)Шаблон:Sfn.
См. также
Примечания
Литература
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Статья
- P. R. Cromwell, E. Beltrami and M. Rampichini, «The Borromean Rings», Mathematical Intelligencer Vol. 20 no. 1 (1998) 53-62.
- Шаблон:Статья
- Шаблон:Статья Статья объясняет, почему кольца Борромео не могут быть абсолютно круглыми
- Шаблон:Статья Статья показывает, что существуют квадраты Борромео, и эти квадраты были воплощены в скульптуре Джоном Робинсоном, который воплотил и другие формы этой структуры.
- Шаблон:Статья Статья рассматривает другие многоугольники.
Ссылки
- «Borromean Rings Homepage», Dr Peter Cromwell’s website.
- Jablan, Slavik. «Are Borromean Links So Rare?», Visual Mathematics.
- «Borromean Rings», The Knot Atlas.
- «Borromean Rings», The Encyclopedia of Science.
- «Symbolic Sculpture and the Borromean Rings», Sculpture Maths.
- «African Borromean ring carving», Sculpture Maths.
- «The Borromean Rings: A new logo for the IMU» [w/video], International Mathematical Union
- Шаблон:Cite web
- Кольца Борромео на сайте «Невозможный мир»
- ↑ Название возникло из герба семьи Борромео, на котором эти кольца присутствуют.
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Blog entry by Arul Lakshminarayan
- ↑ Эта работа была опубликована в журнале Science 2004, 304, 1308—1312. Abstract Шаблон:Wayback