Русская Википедия:Кольца Ньютона
Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Впервые были описаны в 1675 году И. Ньютоном[1].
Описание
Интерференционная картина в виде колец возникает при отражении света от двух поверхностей, одна из которых плоская, а другая имеет относительно большой радиус кривизны и соприкасается с первой (например, стеклянная пластинка и плосковыпуклая линза). Если на такую систему в направлении, перпендикулярном плоской поверхности, падает пучок монохроматического света, то световые волны, отражённые от каждой из упомянутых поверхностей, интерферируют между собой. Сформированная таким образом интерференционная картина состоит из наблюдающегося в месте соприкосновения поверхностей тёмного кружка и окружающих его чередующихся между собой светлых и тёмных концентрических колец[2].
Классическое объяснение явления
Во времена Ньютона из-за недостатка сведений о природе света дать полное объяснение механизма возникновения колец было крайне трудно. Ньютон установил связь между размерами колец и кривизной линзы; он понимал, что наблюдаемый эффект связан со свойством периодичности света, но удовлетворительно объяснить причины образования колец удалось лишь значительно позже Томасу Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу.
Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстаёт от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.
- <math>\Delta=m\lambda</math> — max,
где <math>m</math> — любое целое число, <math>\lambda</math> — длина волны.
Напротив, если вторая волна отстаёт от первой на нечётное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах, и волны гасят друг друга.
- <math>\Delta=(2m+1){\lambda\over 2}</math> — min,
где <math>m</math> — любое целое число, <math>\lambda</math> — длина волны.
Для учёта того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода (разность оптических длин пути).
Если <math>nr</math> — оптическая длина пути, где <math>n</math> — показатель преломления среды, а <math>r</math> — геометрическая длина пути световой волны, то получаем формулу оптической разности хода:
- <math>n_2r_2-n_1r_1=\Delta.</math>
Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами тёмных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на <math>\pi</math>; этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном — эллипсы.
Радиус k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:
- <math> r_k = \sqrt{\left(k - {1 \over 2}\right)\frac{\lambda R}{n}}, </math>
где <math>R</math> — радиус кривизны линзы, <math>k = 1, 2, ...,</math> <math>\lambda</math> — длина волны света в вакууме, <math>n</math> — показатель преломления среды между линзой и пластинкой.
Радиус k-го тёмного кольца Ньютона в отражённом свете определяется в соответствии с формулой:
- <math> r_k = \sqrt{k\frac{\lambda R}{n}}. </math>
Использование
Кольца Ньютона используются для измерения радиусов кривизны поверхностей, для измерения длин волн света и показателей преломления. В некоторых случаях (например, при сканировании изображений на плёнках или оптической печати с негатива) кольца Ньютона представляют собой нежелательное явление.
Используются в физиологии. Подсчёт форменных элементов производится после притирания покровного стекла и камеры Горяева до появления колец Ньютона[3].
Примечания
Ссылки
- Фото колец Ньютона в красном монохроматическом свете
- Шаблон:Cite web
- Видеоролик с демонстрацией колец Ньютона