Русская Википедия:Кремний на изоляторе

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:SOI structure.png
Схема КНИ-подложки

Кремний на изоляторе (КНИ, Шаблон:Lang-en) — технология изготовления полупроводниковых приборов, основанная на использовании трёхслойной подложки со структурой кремний-диэлектрик-кремний вместо обычно применяемых монолитных кремниевых пластин. Данная технология позволяет добиться существенного повышения быстродействия микроэлектронных схем при одновременном снижении потребляемой мощности и габаритных размеров[1]. Так, например, максимальная частота переключения транзисторов (Ft), выполненных по технологическому процессу 130 нм, может достигать 200 ГГц[2][3]. В перспективе, при переходе к технологическим процессам с меньшим размером активных элементов[4] (уже существующему 22 нм, или только разрабатываемому сейчасШаблон:Когда? 10 нм), возможно ещё большее повышение этого показателя. Кроме собственно наименования технологии, термин «кремний на изоляторе» также часто употребляется в качестве названия поверхностного слоя кремния в КНИ-структуре.

Конструктивное исполнение

Файл:SOI and classical MOSFET.png
Схемы МОП-транзисторов, выполненных по технологиям:
а) Классической
б) КНИ

Подложка, выполненная по технологии кремний на изоляторе, представляет собой трёхслойный пакет, который состоит из монолитной кремниевой пластины, диэлектрика и размещённого на нём тонкого поверхностного слоя кремния. В качестве диэлектрика может выступать диоксид кремния SiO2 или, гораздо реже, Шаблон:Vanchor. Дальнейшее производство полупроводниковых приборов с использованием полученной подложки по своей сути практически ничем не отличается от классической технологии, где в качестве подложки используется монолитная кремниевая пластина.

В первую очередь технология КНИ находит применение в цифровых интегральных схемах (в частности, в микропроцессорах), большая часть которых в настоящее время выполняется с использованием КМОП (комплементарной логики на МОП-транзисторах). При построении схемы по данной технологии большая часть потребляемой мощности затрачивается на заряд паразитной ёмкости изолирующего перехода в момент переключения транзистора из одного состояния в другое, а время, за которое происходит этот заряд, определяет общее быстродействие схемы. Основное преимущество технологии КНИ состоит в том, что за счёт тонкости поверхностного слоя и изоляции транзистора от кремниевого основания удаётся многократно снизить паразитную ёмкость, а значит и снизить время её зарядки вкупе с потребляемой мощностью.

Другое преимущество технологии КНИ — превосходная радиационная стойкость к ионизирующим излучениям, поэтому такая технология широко используется для аэрокосмического и военного электронного оборудования.

Недостаток технологии КНИ — большая стоимость.

Технология изготовления

В настоящее время наиболее распространены КНИ-подложки, где в качестве изолятора выступает диоксид кремния. Такие подложки могут быть получены различными способами, основные из которых: ионная имплантация, Шаблон:Iw, Шаблон:Iw и эпитаксия[5].

Ионная имплантация

Технология ионной имплантации также известна как ионное внедрение, имплантация кислорода, ионный синтез захороненных диэлектрических слоев и SIMOX (Шаблон:Lang-en). При использовании данной технологии монолитная кремниевая пластина подвергается интенсивному насыщению кислородом путём бомбардировки поверхности пластины его ионами с последующим отжигом при высокой температуре, в результате чего образуется тонкий поверхностный слой кремния на слое оксида. Глубина проникновения ионов примеси зависит от уровня их энергии, а поскольку технология КНИ подразумевает достаточно большую толщину изолирующего слоя, то при производстве подложек приходится использовать сложные сильноточные ускорители ионов кислорода. Это обусловливает высокую цену подложек, изготовленных по этой технологии, а большая плотность дефектов в рабочих слоях является серьёзным препятствием при массовом производстве полупроводниковых приборов.

Сращивание пластин

При использовании технологии Шаблон:Iw (Шаблон:Lang-en) образование поверхностного слоя производится путём прямого сращивания второй кремниевой пластины со слоем диоксида. Для этого гладкие, очищенные и активированные за счёт химической или плазменной обработки пластины подвергают сжатию и отжигу, в результате чего на границе пластин происходят химические реакции, обеспечивающие их соединение[6]. Данная технология практически идеальна для изготовления КНИ-подложек с толстым поверхностным слоем, но с уменьшением его толщины начинает нарастать плотность дефектов в рабочем слое, а кроме того, усложняется технологический процесс и, как следствие, растёт стоимость готовых изделий. В результате, подложки с толщиной поверхностного слоя менее одного микрометра, которые наиболее востребованы при производстве быстродействующих схем с высокой степенью интеграции, имеют тот же набор недостатков, что и подложки, изготовленные по технологии ионной имплантации[5].

Управляемый скол

Файл:Smart Cut SOI Wafer Manufacturing Schema.svg
Процесс Smart Cut — сращивание двух пластин и использование ионной имплантации водорода для проведения скалывания на заданной глубине.

Технология Шаблон:Iw (Шаблон:Lang-en), разработанная французской компанией Soitec, объединяет в себе черты технологий ионного внедрения и сращивания пластин[7]. В данном технологическом процессе используются две монолитные кремниевые пластины. Первая пластина подвергается термическому окислению, в результате чего на её поверхности образуется слой диоксида, затем верхняя лицевая поверхность подвергается насыщению ионами водорода с использованием технологии ионного внедрения. За счёт этого в пластине создаётся область скола, по границе которой пройдёт отделение оставшейся массы кремния. По завершении процедуры ионного внедрения пластина переворачивается и накладывается лицевой стороной на вторую пластину, после чего происходит их сращивание. На завершающей стадии проводится отделение первой пластины, в результате которого на поверхности второй остаётся слой диоксида и тонкий поверхностный слой кремния. Отделённая часть первой пластины используется в новом производственном цикле.

Производство КНИ-подложек по технологии управляемого скола требует большого количества операций, но в его процессе используется только стандартное оборудование. Кроме того, важным достоинством пластин, полученных по этой технологии, является низкая плотность дефектов в рабочем слое.

Эпитаксия

В случае использования эпитаксиальной технологии (Шаблон:Lang-en) поверхностный слой образуется за счёт выращивания кремниевой плёнки на поверхности диэлектрика. Активные элементы, полученные на таких подложках, демонстрируют отличные рабочие характеристики, но большое число технологических проблем, связанных с эпитаксиальным процессом, пока ещёШаблон:Когда не дают возможностей для массового внедрения этой технологии.

Использование в технике

Шаблон:Update

Перечень ряда устройств, произведённых с использованием КНИ-подложек, приведён ниже.

Девятое поколение процессоров Intel [[CoreШаблон:Nbsp2]], выполненных по технологическому процессу Шаблон:Num, напротив, производится на основе обычных монолитных кремниевых пластин.

Примечания

Шаблон:Примечания

См. также

Ссылки

  • SOI Technology: IBM’s Next Advance In Chip Design — обзорная статья о КНИ и общих принципах функционирования современных цифровых микросхем
  • AMDboard — большая подборка ссылок на публикации, посвященные КНИ
  • Soitec — официальный сайт компании Soitec

  1. Шаблон:Cite web
  2. http://www-03.ibm.com/press/us/en/pressrelease/7819.wss Шаблон:Wayback IBM Announces Next Generation Silicon Germanium Technology. Cost Effective, Power Efficient Technology Drives Innovative New Wireless Applications and Devices] // IBM, 05 Aug 2005: «Advanced SiGe NPNs, Emitter width= 120nm, Ft = 200 GHz (8HP), Ft=100 GHz (8WL)»
  3. Шаблон:Cite web
  4. Хотя технология КНИ может быть использована для построения любых полупроводниковых приборов, чаще всего речь идёт о МОП-транзисторах, характерным размером которых является длина канала, и именно эта величина указывается в наименовании технологического процесса
  5. 5,0 5,1 Шаблон:Cite web
  6. Шаблон:Cite web
  7. Шаблон:Cite web