Русская Википедия:Ксенон

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Другие значения

  1. REDIRECT Xe

Шаблон:Химический элемент Шаблон:Элемент периодической системы Ксено́н (химический символXe, от Шаблон:Lang-la) — химический элемент 18-й группы (по устаревшей классификации — главной подгруппы восьмой группы, VIIIA), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 54.

Простое вещество ксенон — это тяжёлый благородный одноатомный газ без цвета, вкуса и запаха.

История

Ксенон был обнаружен как небольшая примесь к криптону[1][2]. За открытие инертных газов (в частности ксенона) и определение их места в периодической таблице Менделеева Рамзай получил в 1904 году Нобелевскую премию по химии.

Происхождение названия

Рамзай предложил в качестве названия элемента древнегреческое слово Шаблон:Lang-grc2, которое является формой среднего рода единственного числа от прилагательного Шаблон:Lang-grc2 «чужой, странный». Название связано с тем, что ксенон был обнаружен как примесь к криптону, и с тем, что его доля в атмосферном воздухе чрезвычайно мала.

Распространённость

Ксенон — весьма редкий элемент. При нормальных условиях в кубометре воздуха содержится 0,086[3]—0,087[4] смШаблон:Sup ксенона.

В Солнечной системе

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли[5], хотя содержание изотопа 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты[6][7]. В атмосфере Юпитера, напротив, концентрация ксенона необычно высока — почти в два раза выше, чем в фотосфере Солнца[8].

Земная кора

Ксенон содержится в земной атмосфере в крайне незначительных количествах, 0,087 ± 0,001 миллионной доли по объёму (мкл/л), или 1 часть на 11,5 млн[4]. Он также встречается в газах, выделяемых водами некоторых минеральных источников. Некоторые радиоактивные изотопы ксенона, например 133Xe и 135Xe, получаются в результате нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии с длиной волны 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа[3].

Физические свойства

Файл:Cubic-face-centered.svg
Гранецентрированная кубическая структура ксенона; Шаблон:Math = 0,6197 нм

Полная электронная конфигурация атома ксенона: 1s22s22p63s23p63d104s24p64d105s25p6

При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль, молярная энтальпия испарения 12,7 кДж/моль, стандартная молярная энтропия 169,57 Дж/(моль·К)[3].

Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа) 5,894 г/л (кг/м3), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см3. Плотность твёрдого ксенона 2,7 г/см3 (при 133 К)[3], он образует кристаллы Шаблон:Крист[3].

Критическая температура ксенона 289,74 К (+16,59 °C), критическое давление 5,84 МПа, критическая плотность 1,099 г/см3[3].

Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа, плотность 3,540 г/см3[3].

В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.

Файл:XeTube.jpg
Заполненная ксеноном газоразрядная трубка

Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при +25 °C)[3].

При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К), динамическая вязкость 21 мкПа·с, коэффициент самодиффузии 4,8·10−6 м2, коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К)[3].

Ксенон диамагнитен, его магнитная восприимчивость −4,3·10−5. Поляризуемость 4,0·10−3 нм3[3]. Энергия ионизации 12,1298 эВ[9].

Химические свойства

Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие[10].

Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

В настоящее время описаны сотни соединений ксенона: фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

Фториды ксенона

Фториды ксенона были одними из первых полученных соединений ксенона. Они были получены уже в 1962 году, сразу после установления возможности химических реакций для благородных газов. Фториды ксенона служат в качестве исходных веществ для получения всех остальных ковалентных соединений ксенона. Известны дифторид ксенона, тетрафторид ксенона, гексафторид ксенона и большое число их комплексов (преимущественно с фторированными кислотами Льюиса). Сообщение о синтезе октафторида ксенона не было подтверждено более поздними исследованиями.

  • Реакции со фтором[11]:
<math>\mathsf{Xe + F_2 \rightarrow XeF_2}</math> при комнатной температуре и УФ-облучении или при 300—500 ºC под давлением;
<math>\mathsf{Xe + 2F_2 \rightarrow XeF_4}</math> при 400 ºC под давлением; примеси XeF2, XeF6;
<math>\mathsf{Xe + 3F_2 \rightarrow XeF_6}</math> при 300 ºC под давлением; примесь XeF4.

Оксиды и кислоты ксенона

Оксид ксенона(VI) впервые был получен осторожным гидролизом тетрафторида ксенона и гексафторида ксенона. В сухом виде он чрезвычайно взрывоопасен. В водном растворе является очень сильным окислителем и образует слабую ксенонистую кислоту, которая при подщелачивании легко диспропорционирует с образованием солей ксеноновой кислоты (перксенатов) и газообразного ксенона. При подкислении водных растворов перксенатов образуется желтый летучий взрывчатый тетраоксид ксенона.

Ксенонорганические соединения

Первые стабильные ксенонорганические соединения были получены в 1988 году реакцией дифторида ксенона с перфторарилборанами. Гексафторарсенат(V) пентафторфенилксенона(II) (C6F5Xe)[AsF6] необычайно стабилен, плавится почти без разложения при 102°С и используется как исходное соединение для синтеза других ксенонорганических соединений.

Изотопы ксенона

Шаблон:Основная статья Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.

9 изотопов встречаются в природе. Из них стабильными являются семь: 126Xe, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe. Ещё два изотопа (124Xe, T1/2 = 1,8·1022 лет и 136Xe, T1/2 = 2,165·1021 лет) имеют огромные периоды полураспада, на много порядков больше возраста Вселенной (~1,4·1010 лет).

Остальные изотопы искусственные, самые долгоживущие из них 127Xe (период полураспада 36,345 суток) и 133Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов.

Среди ядерных изомеров наиболее стабильны 131Xem с периодом полураспада 11,84 суток, 129Xem (8,88 суток) и 133Xem (2,19 суток)[12].

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ[13], его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и иода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

Шаблон:Заготовка раздела

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1—0,2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В дальнейшем ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон, подробнее см. Криптон#Получение.

Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении[9].

Применение

Файл:Xenon-flash.gif
Ксеноновая лампа-вспышка
Файл:Xenon ion engine prototype.png
Прототип ионного двигателя на ксеноне

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

Ксенон как допинг

Биологическая роль

Шаблон:Нет ссылок в разделе

  • Газ ксенон нетоксичен, но способен вызвать наркоз (по физическому механизму), а в больших концентрациях (более 80 %) вызывает асфиксию.
  • Заполнение ксеноном лёгких и выдыхание при разговоре приводит к значительному понижению тембра голоса (эффект, обратный эффекту гелия).
  • Фториды ксенона ядовиты, ПДК в воздухе — 0,05 мг/м³.

Галерея

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Перевести

Внешние ссылки

Шаблон:Выбор языка Шаблон:Периодическая система элементов Шаблон:Соединения ксенона