Русская Википедия:Летучая зола

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Falseredirect

Файл:Back-Scattered Electron Micrograph of Coal Fly Ash small.tif
Летучая зола при рассматривании в микроскоп

Летучая зола (зола-уноса) — тонкодисперсный остаток сгорания топлива из его минеральных примесей, содержащийся в дымовом газе во взвешенном состоянии. Летучая зола истирает котельные трубы и дымососы, при удалении с дымовыми газами загрязняет атмосферу[1].

В США большая часть летучей золы обычно хранится на угольных электростанциях или размещается на полигонах, в то же время, по данным Американской ассоциации по проблемам угольной золы около 43 % отходов сжигания угля перерабатывается.[2] В Европе по оценке Европейской ассоциации по утилизации продуктов горения угля около 43 % летучей золы используется для производства строительных материалов.[3] В России перерабатывается лишь 4-5 % угольной золы.[4]

Улавливание золы-уноса

При производстве электроэнергии на тепловых электростанциях в зависимости от применяемых топливных систем от сжигания угля образуются остатки в виде зол-уносов (летучих зол), мокрых зол и котельных шлаков.

В процессе сжигания все твердые отходы ТЭЦ можно разделить на: шлак + тяжелая фракция золы; летучая зола-унос, которую, в свою очередь, можно разделить на фракцию средней крупности, улавливаемую электрофильтрами (электростатическими фильтрами) и тонкодисперсную фракцию золы-унос, не улавливаемую фильтрами. Учитывая характеристики фильтров и реальную их эффективность, степень улавливания золы-унос составляет 95 %, то есть 5 % золы-унос ежегодно выбрасывается в атмосферу. Но и при максимальной очистке дымовых газов степень улавливания не превышает 99 %[5].

Эффективность работы газоочистных устройств во многом зависит от физико-химических свойств улавливаемой золы и поступающих в золоуловитель дымовых газов. Основными характеристиками летучей золы в процессе очистки дымовых газов являются плотность, дисперсный состав, электрическое сопротивление (для электрофильтров), слипаемость. Плотность частиц летучей золы для большинства углей лежит в пределах 1900—2500 кг/м3. Дисперсный состав летучей золы во многом зависит от дисперсионного состава сжигаемой угольной пыли, поступающей после размольного устройства в топку. Для инерционных золоуловителей существенное значение имеет слипаемость золы. При выборе и эксплуатации золоуловителей следует учитывать абразивность золы, которая зависит от твердости, размера, формы и плотности частиц.

Из пылеуловителей зола-унос может удаляться сухим методом или путем смешивания с водой и дальнейшим удалением золошлаковой пульпы в отвал.

Химический состав, свойства и классификация

В зависимости от процесса горения, источника и состава сжигаемого угля компоненты летучей золы значительно различаются, но все летучие золы включают значительные количества диоксида кремния (SiO2) (как аморфного, так и кристаллического), оксида алюминия (Al2O3) и оксида кальция (CaO), а также несгоревший углерод[6]. Также летучая зола содержит тяжёлые металлы. Небольшие составляющие летучей золы зависят от конкретной композиции угольного пласта, но могут включать один или несколько из следующих элементов или соединений, обнаруженных в следовых концентрациях (до сотен ppm): мышьяк, бериллий, бор, кадмий, хром, шестивалентный хром, кобальт, свинец, марганец, ртуть, молибден, селен, стронций, таллий и ванадий наряду с очень малыми концентрациями диоксинов и соединений ПАУ[7][8].

Химический состав золы-уноса[9]
Компоненты Пределы изменения химического состава золы, %, образующейся при сжигании углей
Донбасса Кузбасса Караганды Подмосковья
SiO2 50-55 58-63 59-61 48-56
Al2O3 21-28 20-26 25-26 25-36
Fe2O3 7-16 5-7 5-6 7-10
FeO 0-7 - - 0-6
CaO 2-5 2-4 3-4 2-5
MgO 1-3 0,4-1,5 1-1,2 0,2-0,9
SO3 0,6-1,6 - 0,8 0,2-0,9
K2O 2,5-4,7 1,7-2,3 1,6-1,7 0,4-0,7
Na2O 0,4-1,3 1-1,4 1 0,1-0,4

Фазово-минералогические исследования состава золы различных видов твердого топлива показывают, что основной фазой всех видов золы является стекло. Кристаллическая фаза представлена различными количествами кварца, гематита, магнетита и различными силикатами кальция.

Золы уноса подразделяют по виду сжигаемого угля:

— антрацитовую (образующуюся при сгорании антрацита, полуантрацита и тощего каменного угля),

— каменноугольную,

— буроугольную;

по химическому составу на низкокальциевую (кислую и сверхкислую) и высококальциевую (высокосульфатную и низкосульфатную)[10]; или кислую (с содержанием оксида кальция до 10 %) и основную (буроугольную, с содержание окиси кальция более 10 %)[11];

по степени дисперсности (по остатку на сите № 008) на низкодисперсную (до 30 %), среднедисперсную (до 20 %) и высокодисперсную (до 15 %)[10]; или на три класса (по остатку при мокром рассеивании на сите № 0045) — до 15 %, до 40 %, более 40 %[11];

в зависимости от потерь при прокаливании на 4 категории (до 2 %, до 5 %, до 9 %, более 9 %)[11].

Экологические проблемы

Радиология

Твердые горючие ископаемые незначительно влияют на общий фон природной радиоактивности, но отдельные их месторождения, а также продукты переработки твердых горючих ископаемых, особенно золошлаковые, отличаются повышенной радиоактивностью и повышенным содержанием естественных радионуклидов (тория, радия, урана и изотопа 40K). Значительно увеличиваются содержания естественных радионуклидов в твердых продуктах, улавливаемых после термической переработки исходных углей. Так, специальные исследования, проведенные во многих странах мира, показали, что радиоактивность почв и воздуха на территориях, прилегающих к ТЭС, вероятно, вследствие осаждения продуктов сжигания иногда в десятки раз превышают не только фоновые, но даже предельно допустимые значения[12]. Многое зависит при этом оттого, какой именно уголь использует конкретная ТЭС, к тому же очень многое определяется технологиями подготовки угля, его сжигания, улавливания и сбора золошлаковых продуктов[13]. При среднем содержании урана в земной коре 2,0 г/т среднее содержание урана в богатых золах уноса достигает 400 г/т.

Содержание Th и U в золах-уноса ТЭС[13]
Название ТЭЦ (ТЭС) Содержание в золе-уноса, г/т
Th U
Углегорская 37,2 7,6
Зуевская 56,0 10,4
Кураховская 16,7 2,9
Мироновская 32,4 4,2
Новочеркасская 33,0 5,2
Луганская 17,8 4,5
Шахтинская 23,9 7,0
Московская ТЭЦ-22 51,5 4,9
Владимирская ТЭЦ-1 25,9 2,9

Вследствие накопления естественных радионуклидов в высокодисперсных золах уноса, значительная часть которых не улавливается после сжигания углей, выбрасывается в атмосферу и затем оседает на земную поверхность, может происходить накопление естественных радионуклидов в почвах вокруг ТЭС[13]. Большая часть выпавшей на земную поверхность золы-уноса оседает на надземной части растений и в конечном итоге попадает в почву. Кроме того, значительный вклад в радиоактивное загрязнение окружающей среды может дать эффект удержания золы и аэрозолей кронами деревьев в лесных массивах (до 5 раз)[14].

Зола-унос, отгружаемая с ТЭЦ как сырье для дальнейшего использования по суммарной удельной эффективной активности естественных радионуклидов должна соответствовать требованиям соответствующих норм и гигиенических нормативов. При суммарной удельной эффективной активности естественных радионуклидов до 370 Бк/кг по российским нормам строительные материалы допускаются до всех видов строительства[15]. Суммарная удельная эффективная активность естественных радионуклидов золы Рефтинской ГРЭС составляет 95,1 Бк/кг, а газозолобетона на ее основе — 40,33 Бк/кг[16].

Направления использования

Зола уноса может обладать пуццолановыми свойствами и/или гидравлической активностью[11]. Летучая зола используется при производстве строительных материалов в качестве пуццолана для производства цемента, сухих строительных смесей, частичной замены портландцемента[3] в производстве бетона, бетонных и железобетонных изделий. Присутствие пуццолановых добавок обеспечивают бетон большей защитой от влажных условий и воздействия агрессивным химикатов[3].

Укрепление грунта в дорожном строительстве

Введение высококальциевых зол уноса в грунты позволяет заменить часть цемента и извести, используемых для этого.

Целесообразность применения зол уноса в качестве улучшающей добавки определяется способностью их вступать в реакцию химического взаимодействия с известью с образованием низкоосновных гидросиликатов кальция, которые цементируют минеральные частицы и агрегаты грунта в единый структурный комплекс. В отличие от укрепления грунтов цементом, в этом случае вяжущее образуется непосредственно в самой смеси. Таким образом, совместное использование золы уноса и извести для укрепления грунтов базируется на принципе синтеза вяжущего вещества в системе грунт — зола — известь[17].

Грунты, обработанные активной золой-уносом или известково-зольными вяжущими характеризуются относительно медленным набором прочности и значительной деформативной способностью. При этом в грунтах на зольных вяжущих в первый год эксплуатации обычно не появляется усадочных или температурных трещин. В условиях северных и центральных областей России грунты укрепленные зольными вяжущими рекомендуется использовать преимущественно для устройства оснований под асфальтобетонные покрытия. Водонепроницаемое асфальтобетонное покрытие сохраняет влажность основания, необходимую для нормального протекания процессов гидратации, которые у зольных вяжущих протекают дольше по сравнению с цементными[18].

Гидравлические дорожные вяжущие (ГДВ) очень широко используются в Германии при укреплении грунтов, в первую очередь из-за их низкой стоимости по сравнению с традиционными вяжущими, например, известью или цементом. Состав и основные параметры ГДВ приведены в стандартах EN13282-1[19] и EN13282-2[20]. Исследования вяжущих с высоким содержанием золы-уноса начались в Чешской Республике задолго до создания стандартов EN. Вяжущее RSS5 из 80 % оснóвной золы-уноса, полученной при сжигании каменного угля в кипящем слое, и 20 % негашеной извести, используется с 2010 года как хорошая альтернатива извести для обработки глин и суглинков[21].

Зольный гравий

Путем обжиговой или безобжиговой грануляции золы может быть получен зольный гравий.

Гранулированием золы уноса с последующим спеканием гранул при высоких температурах в печах получают обжиговый зольный гравий.

Холодным гранулированием золы уноса путем ее окатывания во вращающихся емкостях получают безобжиговый зольный гравий.

Зольный гравий применяется в высококачественных бетонах (high performance concrete), в самоуплотняющихся бетонных смесях (self-compacting concrete) и в легких бетонах.

Для высококачественных бетонов применение зольного гравия позволяет уменьшить стоимость бетона при сохранении его основных свойств. В самоуплотняющихся бетонах округлая форма зольного гравия и его относительно небольшой размер повышает подвижность бетона и его удобоукладываемость, особенно при густом армировании. Подобные смеси легче подаются бетононасосами. Использование зольного гравия в легких бетонах снижает его плотность и улучшает его теплотехнические характеристики[22][23].

Добавка в бетоны и растворы

Золу применяют как минеральную добавку или наполнитель при изготовлении тяжелых, легких, ячеистых бетонов, сухих строительных смесей и строительных растворов в целях экономии цемента, заполнителей, улучшения технологических свойств бетонной и растворной смесей, а также показателей качества бетонов и растворов.

При изготовлении ячеистых бетонов кислые золы применяют в качестве кремнеземистого компонента смеси, а также в целях экономии цемента в бетонах неавтоклавного твердения. В конструкционно-теплоизоляционных бетонах кислую золу применяют для частичной или полной замены пористых песков и снижения средней плотности бетона. Для конструкций подводных и внутренних зон гидротехнических сооружений используют кислую золу[24].

При использовании в бетонах естественного твердения взамен части цемента некоторых видов золы (в основном кислых) может наблюдаться снижение (на 20-30 %) прочности при сжатии в течение 28-60 суток и последующее выравнивание прочности в более поздние сроки 90-180 суток по сравнению с бетоном аналогичного состава без добавки золы[9]. Поэтому составы бетона и раствора с золой в основном актуальны при положительных температурах твердения.

Золы-уноса могут быть включены в состав самоуплотняющихся бетонов для повышения стабильности бетонной смеси, повышения водоудерживающей способности; плотность и прочность бетона при этом увеличиваются[25].

Основные золы с содержанием оксида кальция CaO более 30 % применяют в качестве вяжущего для частичной замены извести или цемента в ячеистых бетонах автоклавного и неавтоклавного твердения, при изготовлении строительных растворов и бетонов для сборных и монолитных бетонных и железобетонных изделий и конструкций. Часть извести содержится в глубине частиц золы, и взаимодействует с водой уже позже формирования структуры цементного камня, что приводит к возникновению трещин и падению прочности цементного камня. Это сдерживает применение высокоосновных зол в бетонах и растворах.

К 28 суткам нормального твердения свободная CaO золы-уноса успевает прореагировать с водой лишь на 50 %, но в условиях пропаривания гидратация проходит на 70-80 %. По-разному происходит и образование гидросульфоалюминатрных фаз, если в нормальных условиях сульфат кальция связывается в основном в эттрингит, то при пропаривании — в моносульфоалюминат кальция. Таким образом, пропаривание золосодержащих материалов снижает опасность возникновения деструктивных процессов в затвердевшем материале[26].

Для решения проблемы деструктивных процессов золу-уноса можно предварительно домалывать до более высокой степени дисперсности, обнажая частицы извести[27]. Этот технологический прием обеспечивает гашение извести до потери пластических свойств цементным камнем, устраняя угрозу снижения прочности и растрескивания материала. Применение домолотой совместно с гипсом золы-уноса с удельной поверхностью 410 м2/кг позволило получить самоуплотняющийся бетон без спада прочности после 6 месяцев твердения при степени замещения цемента до 50 %. Но повышение степени наполнения вяжущего золой значительно увеличивает усадочные деформации бетона[28].

Добавка в цемент

Дисперсионный состав золы-уноса и ее химические свойства позволяют использовать ее в составе цементов. На основной золе-уноса Ошмянской ТЭЦ от сжигания торфа предложен состав добавочного портландцемента марки 500 при содержании золы-уноса до 20 %, марки 200 при содержании золы до 70 %[29].

Сорбенты

Зола-уноса может быть использована в качестве замены активированного угля для для очистки сточных вод, содержащих, например, азокрасители метиленовый голубой и метиленовый красный[30].

В геологической летописи

Из-за воспламенения угольных месторождений Сибирскими траппами во время пермско-триасового вымирания около 252 миллионов лет назад в океаны было выброшено большое количество полукокса, очень похожего на современную летучую золу, которая сохранилась в морских отложениях канадской Арктики. Было высказано предположение, что летучая зола могла привести к токсичным условиям окружающей среды.[31]

Примечания

Шаблон:Примечания

Ссылки

Внешние ссылки

Шаблон:Выбор языка