Русская Википедия:Линк вершины многогранника

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Переработать

Файл:Triangular prism vertfig.svg
Линк вершины треугольной призмы является треугольником.
Файл:Great icosahedron vertfig.png
Линк вершины большого икосаэдрапентаграмма.

Линк вершины многогранника или вершинная фигура — многогранник на единицу меньшей размерности, который получается в сечении исходного многогранника плоскостью, срезающей одну вершину. В частности линк вершины содержит информацию о порядке следования граней многогранника вокруг одной вершины.

Шаблон:Anchor Определения — основное и вариации

Если взять некоторую вершину многогранника, отметить точку где-нибудь на каждом из прилегающих рёбер, нарисовать отрезки на гранях, соединяя полученные точки, в результате получится полный цикл (многоугольник) вокруг вершины. Этот многоугольник и является линком вершины.

Формальное определение может варьироваться очень широко в зависимости от обстоятельств. Например, Коксетер (1948, 1954) менял своё определение как ему удобно для текущего обсуждения. Большинство нижеприведённых определений линка подходит одинаково хорошо как для бесконечных мозаик на плоскости, так и для пространственных мозаик из многогранников.

Как плоское сечение

Если срезать вершину многогранника, пересекая каждое из рёбер, смежных вершине, поверхность среза будет являться линком. Это, пожалуй, наиболее общепринятый подход и наиболее понятный. Разные авторы делают срез в разных местах. ВеннинджерШаблон:SfnШаблон:Sfn перерезает каждое ребро на единичном расстоянии от вершины, так же как это делает и Коксетер (1948). Для однородных многогранников построение Дормана Люка пересекает каждое смежное ребро в середине. Другие авторы делают сечение через вершину на другой стороне каждого ребраШаблон:SfnШаблон:Sfn.

Как сферический многоугольник

КромвельШаблон:Sfn делает сферическое сечение с центром в вершине. Поверхность сечения или линк, тогда, является сферическим многоугольником на этой сфере.

Как множество связных вершин

Многие комбинаторные и вычислительные подходы (например, СкиллингШаблон:Sfn) рассматривают линк как упорядоченное (или частично упорядоченное) множество точек всех соседних (соединённых ребром) вершин для данной вершины.

Абстрактное определение

В теории абстрактных многогранников линка заданной вершины V состоит из всех элементов, инцидентных вершине — вершин, рёбер, граней и т. д.

Это множество элементов известно как вершинная звезда.

Основные свойства

Линка вершины n-многогранника — это (n−1)-многогранник. Например, линком вершины 3-мерного многогранника является многоугольник, а линком для 4-мерного многогранника является 3-мерный многогранник.

Линки наиболее полезны для однородных многогранников, поскольку все вершины имеют один линк.

Для невыпуклых многогранников линк может быть тоже невыпуклым. Однородные многогранники, например, могут иметь грани в виде звёздчатых многоугольников, звёздчатыми могут быть и линки.

Построение Дормана Люка

Грань двойственного многогранника двойственные линку соответствующей вершины.

Правильные многогранники

Если многогранник правильный, его можно описать символом Шлефли, символы граней, и линков можно извлечь из этой записи.

В общем случае правильный многогранник с символом Шлефли {a,b,c,...,y,z} имеет грани (наибольшей размерности) {a,b,c,...,y}, а в качестве линка будет {b,c,...,y,z}.

  1. Для трёхмерного правильных многогранников, возможно звёздчатых {p,q}, линком будет {q}, q-угольник.
    • Например, линк для куба {4,3} — треугольник {3}.
  2. Для правильных 4-мерных многогранников или пространственных мозаик {p,q,r} линком будет {q,r}.
    • Например, линком для гиперкуба {4,3,3} будет правильный тетраэдр {3,3}.
    • Линком для кубических сот {4,3,4} будет правильный октаэдр {3,4}.

Поскольку двойственный многогранник правильного многогранника также является правильным и представляется обратными индексами в символе Шлефли, легко понять, что двойственная фигура к линку вершины является ячейкой двойственного многогранника. Для правильных многогранников этот факт является частным случаем построения Дормана Люка.

Пример линка сот

Линком вершины Шаблон:Не переведено 5 является неоднородная квадратная пирамида. Один октаэдр и четыре усечённых куба, расположенных около каждой вершины, образуют пространственную мозаику.

Линк вершины: Неоднородная квадратная пирамида Файл:Truncated cubic honeycomb verf.png
Диаграмма Шлегеля
Файл:VF-truncated cubic.png
Перспектива
Образуется из квадратного основания октаэдра Файл:Octahedron vertfig.png
(3.3.3.3)
и четырёх равнобедренных треугольных сторон усечённого куба Файл:Truncated cube vertfig.png
(3.8.8)

Линк ребра

Файл:Truncated cubic honeycomb.png
Усечённые кубические соты имеют два типа рёбер. Рёбра первого типа принадлежат четырём усечённым кубам, а рёбра второго — одному октаэдру и двум усечённым кубам. Это можно рассматривать как два вида линка рёбер. Эти рёбра можно рассматривать как линк линка

С линком связано другое понятие — линк ребра. Линк ребра является (n−2)-многогранником, представляющим расстановку граней размерности n−1 вокруг данного ребра (прилегающих к данному ребру). Линк ребра является линком вершины линка вершины[1]. Линки ребер полезны для выражения связей между элементами правильных и однородных многогранников.

Правильные и однородные многогранники, полученные в результате отражений с одним активным зеркалом, имеют единственный тип линка ребра, но в общем случае однородный многогранник может иметь столько линков, сколько зеркал активны при построении, поскольку каждое активное зеркало создаёт ребро в фундаментальной области.

Правильные многогранники (и соты) имеют единственный линк ребра, которая является также правильным. Для правильного многогранника {p,q,r,s,...,z} линк ребра будет {r,s,...,z}.

В четырёхмерном пространстве линк ребра многогранника или трёхмерных сот является многоугольником, представляющим расположение граней вокруг ребра. Например, линк ребра правильных кубических сот {4,3,4} является квадрат, а для правильного четырёхмерного многогранника {p,q,r} линк ребра будет {r}.

Менее очевидно, что у Шаблон:Не переведено 5 t0,1{4,3,4} в качестве линк вершины выступает квадратная пирамида. Здесь присутствует два типа линков ребер. Один — квадратный линк ребра при вершине пирамиды, она соответствует четырём усечённым кубам вокруг ребра. Второй лик — треугольники при основании пирамиды. Они представляют расположение двух усечённых кубов и октаэдра вокруг других ребер.

См. также

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Rq