Русская Википедия:Лоренц-ковариантность
Шаблон:Другие значения термина Лоренц-ковариантность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца[1]. Более точно, всякий физический закон должен представляться релятивистски инвариантной системой уравнений, т.е. инвариантной относительно полной ортохронной неоднородной группы Лоренца.[2] Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено.
Терминология
Лоренц-инвариантность и релятивистская инвариантность — синонимы. Функция Лагранжа из которой получаются уравнения поля должна быть инвариантна относительно полной группы Лоренца. В это понятие включают преобразования Лоренца и трансляции по всем четырём осямШаблон:Sfn.
Лоренц-ковариантность физических законов
Лоренц-ковариантность физических законов — конкретизация принципа относительности (то есть постулируемого требования независимости результатов физических экспериментов и записи уравнений от выбора конкретной системы отсчёта). Исторически эта концепция стала ведущей при включении в сферу действия принципа относительности (раньше формулировавшегося с применением не преобразования Лоренца, а преобразования Галилея) максвелловской электродинамики, уже тогда лоренц-ковариантную и не имевшую видимых возможностей переделки для ковариантности относительно преобразований Галилея, что привело к распространению требования лоренц-ковариантности и на механику и вследствие этого к изменению последней.
Преобразования Лоренца удобно рассматривать как вращения и специальные преобразования в четырёхмерном пространстве и использовать для их описания векторный и тензорный анализ. Благодаря этому запись систем математических уравнений, описывающих законы природы, в векторной и тензорной форме, позволяет сразу же определить их лоренц-ковариантность, не выполняя преобразование Лоренца.Шаблон:Sfn
«Ковариантность» vs «инвариантность»
В последнее время наметилось вытеснение термина лоренц-ковариантность термином лоренц-инвариантность, который всё чаще применяется равно и к законам (уравнениям), и к величинам Шаблон:Нет АИ. Трудно сказать, является ли это уже нормой языка, или всё же скорее некоторой вольностью употребления. Однако в более старой литературеШаблон:Какой имелась тенденция строгого разграничения этих терминов: первый (ковариантность) употреблялся по отношению к уравнениям и многокомпонентным величинам (представлениям тензоров, в том числе векторов, и самим тензорам, так как часто не проводилось терминологической грани между тензором и набором его компонент), подразумевая согласованное изменение компонент всех входящих в равенства величин или просто согласованное друг с другом изменение компонент разных тензоров (векторов); второй же (инвариантность) применялся, как более частный, к скалярам (также к скалярным выражениям), подразумевая простую неизменность величины.
Примеры
Скаляры
Синонимом слов лоренц-инвариантная величина в 4-мерном пространственно-временном формализме является термин скаляр, который для полной конкретизации подразумеваемого контекста иногда называют лоренц-инвариантным скаляром.
- Скорость света в вакууме.
- <math>\Delta s^2=\eta_{ab} x^a x^b=c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2\ </math>
- при равномерном движении:
- <math>\Delta \tau = \sqrt{\frac{\Delta s^2}{c^2}},\, \Delta s^2 > 0</math>
- в общем случае:
- <math>\Delta \tau = \int d\tau = \frac 1c\int \sqrt{(ds)^2} = \int \sqrt{1-\frac{v^2}{c^2}} dt,\ \ </math> где <math>v</math> — величина трехмерной скорости, причем подразумевается, что всюду <math>(ds)^2 > 0, v<c </math>
- Действие для массивной бесструктурной точечной частицы массы m:
- <math>S = mc^2\Delta \tau =mc\int \sqrt{(ds)^2} = mc^2\int \sqrt{1-\frac{v^2}{c^2}} dt</math>
- <math>m^2 c^2 =\eta_{ab} p^a p^b= \frac{E^2}{c^2} - p_x^2 - p_y^2 - p_z^2</math>
- Электромагнитные инварианты (из теории Максвелла):
- <math>F_{ab} F^{ab} = \ 2 \left( B^2 - \frac{E^2}{c^2} \right)</math>
- <math>G_{cd}F^{cd}=\frac{1}{2}\epsilon_{abcd}F^{ab} F^{cd} = -\frac{4}{c} \left( \vec B \cdot \vec E \right)</math>
- Волновой оператор (оператор Даламбера):
- <math>\Box = \eta^{\mu\nu}\partial_\mu \partial_\nu = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}</math>
- (при данном выборе сигнатуры метрики Минковского η приведенный вид оператора совпадает с традиционным определением оператора Даламбера с точностью до знака).
- Электрический заряд
- Постоянная Планка
- Энтропия
- Постоянная Больцмана
- Фаза электромагнитной волны
4-векторы
- <math>x^a = [ct, x, y, z]\ </math>
- <math>\partial_a = \left[ \frac{1}{c}\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right]</math>
- <math>U^a = \frac{dx^a}{cd\tau} = \frac{1}{c\sqrt{1 - v^2/c^2}} \left[c, v_x, v_y, v_z\right],</math>
- где <math>v_x = \frac{dx}{dt}, v_y = \frac{dy}{dt}, v_z = \frac{dz}{dt}, v = \sqrt{v_x^2 + v_y^2 + v_z^2}</math>
- <math>p^a = m_0 U^a = \left[\frac{E}{c}, p_x, p_y, p_z\right]</math>
- <math>j
^a = [c\rho, j_x, j_y, j_z]\ </math>
Тензоры
- <math>\delta^a_b = \begin{cases} 1 & \mbox{if } a = b, \\ 0 & \mbox{if } a \ne b. \end{cases}</math>
- <math>\eta_{ab} = \eta^{ab} = \begin{cases} 1 & \mbox{if } a = b = 0, \\ -1 & \mbox{if }a = b = 1, 2, 3, \\ 0 & \mbox{if } a \ne b. \end{cases}</math>
- <math>\epsilon_{abcd} = -\epsilon^{abcd} = \begin{cases} +1 & \mbox{если } \{abcd\} \mbox{ четная перестановка } \{0123\}, \\ -1 & \mbox{если } \{abcd\} \mbox{ нечетная перестановка } \{0123\}, \\ 0 & \mbox{во всех прочих случаях.} \end{cases}</math>
- <math>F_{ab} = \begin{bmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & -B_z & B_y \\ -E_y/c & B_z & 0 & -B_x \\ -E_z/c & -B_y & B_x & 0 \end{bmatrix}</math>
- <math>G_{cd} = \frac{1}{2}\epsilon_{abcd}F^{ab} = \begin{bmatrix} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{bmatrix}</math>
См. также
- Преобразования Лоренца
- Принцип относительности
- Общековариантность
- Калибровочная инвариантность
- Ковариантность и контравариантность (математика)
Примечания
Литература
- ↑ Эйнштейн А. К проблеме относительности // Альберт Эйнштейн Собр. науч. тр. в 4 т. — М. Наука, 1965. — т. 1, с. 30
- ↑ Ломсадзе Ю. М. Теоретико-групповое введение в физику элементарных частиц. — М., Высшая школа, 1962. — c. 114