Русская Википедия:Магнитозвуковые солитоны

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Магнитозвуковы́е солито́ны — вид солитонов в плазме, представляющих собой устойчивые уединённые сжатия ионной плотности, распространяющиеся в пространстве без изменений формы.

Общие принципы

В однородной плазме, помещённой во внешнее магнитное поле, возможно существование магнитозвуковых волн, которые при достаточно высокой амплитуде становятся нелинейными. Нелинейность этих волн в первую очередь связана с конвективным членом в уравнениях гидродинамики плазмы. Наличие нелинейности приводит к укручения фронта пучка магнитозвуковых волн, которое в некоторый момент компенсируется дисперсией, стремящейся наоборот расширить волновой пакет. В солитонах дисперсионное расплывание в каждой точке уравновешено нелинейными эффектами.

Одномерное приближение

В наиболее простом случае сильно неизотермической плазмы, в которой температура электронов значительно превышает температуру ионов, одномерные нелинейные магнитозвуковые волны могут быть описаны уравнением Кортевега — де Фриза, имеющим следующий безразмерный вид:

<math>\frac{\partial n}{\partial t} + 6n\frac{\partial n}{\partial x} + \frac{\partial^3n}{\partial x^3} = 0</math>

где переменная n отвечает возмущению концентрации ионов в плазме. Уравнение Кортевега — де Фриза имеет семейство решений в виде уединённых волн вида:

<math>n = \frac{2a^2}{\cosh^2\left(a(x-4a^2t)\right)}</math>

где a — безразмерная амплитуда солитона, являющаяся свободным параметром. Скорость такого солитона равна <math>v=4a^2</math>.

Двумерное приближение

В двумерной геометрии обобщением уравнения Кортевега — де Фриза является уравнение Кадомцева — Петвиашвили, имеющее вид:

<math>\frac{\partial}{\partial x}\left(\frac{\partial n}{\partial t} + 6n\frac{\partial n}{\partial x} + \frac{\partial^3n}{\partial x^3}\right) = \pm \frac{\partial^2 n}{\partial y^2}</math>

Магнитозвуковым волнам соответствует знак плюс в правой части уравнения. При этом оказывается, что квазиодномерные солитоны неустойчивы, однако имеется особый класс устойчивых решений — так называемых лампов (Шаблон:Lang-en) — двумерных локализованных солитонов. В отличие от одномерных солитонов и от двумерных ионно-звуковых солитонов, лампы спадают на бесконечности не экспоненциально, а по степенному закону:

<math>n(x,y) \sim \left(x^2 + y^2\right)^{-1}</math>

См. также

Литература

Шаблон:Квазичастицы